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Abstract 

 

This study aims to explore the fusion of medical imaging and advanced machine learning in 

echocardiography, an essential diagnostic tool for heart assessments, especially in the pediatric 

domain. While echocardiography is widely used, challenges specific to the pediatric population 

emphasize the need for innovation. Beginning with investigating the heart’s complex structures, 

the journey of this research dives into reviewing the existing literature on pediatric 

echocardiography, addressing its advantages and limitations. 

Central to the methodology is the first extensive pediatric echocardiographic video dataset 

available as of early 2023 from Stanford's Center for Artificial Intelligence in Medicine & Imaging, 

named EchoNet-Pediatric. Expert-annotated echocardiograms lay the foundation for computer 

vision algorithms and deep learning models on which they are trained and validated. 

The results, based on key performance metrics, demonstrate the capabilities of integrating 

Artificial Intelligence in pediatric echocardiography, showcasing the synergy between traditional 

medical practices and cutting-edge advancements. 
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Chapter 1 

Introduction 

The ever-evolving world of cardiac diagnostics has experienced significant changes over the recent 

years due to the latest advancements in medical technology and the evolution of computational 

methods in Computer and Data Sciences. This introduction is aiming to pave the way for this study 

of exploring computer vision and deep learning techniques in pediatric echocardiography by 

addressing the problem statement, emphasizing the significance of echocardiography, 

acknowledging the limitations of existing approaches, outlining the research goals and hypotheses, 

justifying the importance of this study, and providing an overview of how this thesis is structured. 

How the heart works 

Heart Anatomy 

The human heart is an extraordinary machine. It 

beats about 100,000 times a day and the heart’s 

muscular walls pump about 5.6 liters of blood 

into blood vessels branching throughout the 

human body three times a minute. 

The heart is divided into two sides, the left and 

the right, each of them consisting of two 

chambers. On each side the upper part is called 

atrium while the bottom ventricle. Four valves 

coordinate the direction of the blood flow, the 

atrioventricular valves that divide the atria from 

the ventricles, and the semilunar valves that, 

Figure 1: Human heart anatomy and blood flow  

© alilamedicalimages.org 
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when open, allow the blood flow to the two most important human arteries, the aorta and the 

pulmonary artery. 

Non-oxygenated blood arrives to the right atrium via the superior and inferior vena cavae from the 

circulatory system, while oxygen-rich blood arrives to the left atrium via the pulmonary veins from 

the lungs. From the right atria the blood flows to the right ventricle via the tricuspid valve, while 

from the left atria the blood flows to the left ventricle via the mitral valve. The right ventricle 

pumps the deoxygenated blood to the lungs via the pulmonary valve to the pulmonary artery in 

order to be oxygenated, while the left ventricle pumps the oxygenated blood via the aortic valve 

to the aorta in order to reach the body. (University of Michigan, 2019) 

Cardiac Cycle 

The cardiac cycle is a sequence of perfectly orchestrated movements that take place in the normal 

heart during each heartbeat. There are two types of movements of cardiac chambers: systole and 

diastole. Systole means contraction and diastole means relaxation. Atria and ventricles move 

independently; however, movements of the ventricles are clinically more important since it is the 

ventricles that ultimately pump the blood into the circulation system. Atria act as assistants of 

ventricles when it comes to pumping, thus, even if not mentioned explicitly, the movements refer 

to the movements of ventricles. Thus, systole means ventricular systole and diastole means 

ventricular diastole. (University of California San Diego, 2017) 
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There are four phases of the cardiac cycle. 

1. Ventricular Diastole (Inflow): During 

this, the inlet atrioventricular valves are 

open, and outlet semilunar valves are 

closed. Inflow follows a relaxation phase, 

which results in the opening of the 

atrioventricular valves. Then the blood 

rushes from the atria into the ventricles due 

to the lower pressure in the ventricles. 

2. Isovolumetric contraction: By the end of 

the ventricular filling, an electrical 

impulse originated from the sinus node, 

the natural pacemaker of the heart, starts 

depolarizing the ventricular myocardium 

which causes the contraction of the 

ventricles. This results in a rise of the 

ventricular pressure, which causes the 

closing of the atrioventricular valves.  During this phase, all the valves are closed and the 

ventricles are contracting, but there is no flow of blood for a very short period of time. This 

is the End Diastole. 

3. Ventricular ejection (Outflow): Eventually, the pressure increases above that in the major 

arteries, causing the semilunar valves to open. During this phase the atria start relaxing and 

collecting blood. The elevated pressure in the ventricles causes a rapid ejection of blood 

via the major arteries where oxygenated blood travels to the body via the Aorta and 

deoxygenated blood travels to the lungs via the pulmonary artery, followed by a slowing 

ejection. 

4. Isovolumetric relaxation: Due to the slow ejection at the end of this phase, the ventricles 

start to dilate. Eventually the blood tends to flow back which causes the closure of the 

semilunar valves. After this, the ventricles relax with closed chambers for a brief period of 

time. This is the End Systole. The pressure in the ventricles falls below that in the atria and 

atrioventricular valves open causing the beginning of the next cycle. 

Figure 2: Cardiac Cycle Simulation © 

humanbiomedia.org 



4 

 

 

Ejection Fraction 

The Ejection Fraction compares the amount of 

blood in the heart to the amount of blood pumped 

out. It is a percentile measurement and can be 

calculated for either the left or the right ventricle. 

The Left Ventricular Ejection Fraction (LVEF) 

measures how much blood gets pumped from the 

left ventricle to the body, where the Right 

Ventricular Ejection Fraction (RVEF) measures 

how much blood is pumped out of the right side of the heart, to the lungs. Given that the two 

ventricular volumes are approximately equal, the ejection fractions of the left and right ventricles 

are typically similar with little variation. A significant discrepancy between the ejection fractions 

of the left and right ventricles can imply an underlying cardiac issue and the relative elevation or 

reduction of either ejection fractions can guide healthcare professionals towards a potential 

diagnosis. (Mayo Clinic, n.d.) 

 

Due to its technical simplicity compared to calculating the RVEF and the significant impact to the 

systemic circulation, LVEF is more commonly measured and reported than RVEF, especially in 

echocardiograms. Ejection fraction typically refers to the left side of the heart and is the most used 

parameter to assess cardiac health in patients. Nonetheless, under certain conditions, assessment 

of the RVEF is of paramount importance. 

 

According to the American Heart Association Left Ventricle Ejection Fraction is considered: 

• Normal between 50% and 70%  

• Mildly reduced between 41% and 49%. 

• Reduced when 40% or less. 

 

Figure 3: Left Ventricular Ejection Fraction Function 

© digitalcommons.otterbein.edu 
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Echocardiography  

An Echocardiogram is a first-line test using high frequency sound waves to map out the shape and 

size of the heart, thus allowing the doctor to see how well the heart pumps blood and look for 

abnormalities of the heart valves and heart walls (myocardium). While performing an 

echocardiogram the operator applies a cool gel on the chest and moves a transducer firmly through 

the gel that sends painless sound waves to the heart. The sound waves bounce off the heart and 

echo back to the transducer. The returning sound waves are converted to two-dimensional 2D 

moving images of the heart muscles, chambers and valves on a video screen. (Josh Hopkins 

Medicine, n.d.) 

 

 

Figure 4: Transthoracic echocardiography © ypo.education 

 

Problem Statement 

Cardiovascular Diseases (CVDs) diachronically put immense pressure on the health systems 

globally. According to the World Health Organization Reports it is the leading cause of morbidity 

and mortality (World Health Organization, 2021). The persistent dominance of Cardiovascular 
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Diseases (CVDs), emphasizes the constant need for groundbreaking image diagnostic methods. In 

the pediatric population, even though Cardiovascular Diseases (CVDs) are not the leading cause, 

there is a significant rise in the last decade that is connected to obesity due to the modern lifestyle. 

The statistics on pediatric and congenital heart diseases are disheartening and they call for 

immediate action. 1 out of every 100 children born globally has a heart defect, known as congenital 

heart disease (CHD). 25% of these children will need medical intervention within their first years 

of life to survive. The survival of a child with a heart condition depends on their birth location and 

the availability of heart care treatment during their lifetime. Other heart conditions that develop 

during childhood, known as acquired heart diseases (AHD) also significantly add to the global burden 

of pediatric and congenital heart disease. (World Heart Federation, 2023) 

Taking into consideration the perplexity of congenital heart defects as well the differences in 

anatomy and physiology while children grow up, echocardiography has emerged as the primary 

diagnostic tool, especially for evaluating pediatric cardiac diseases that accurate assessment is of 

vital importance (Lai et al., 2006). Quick and accurate diagnosis of the Left Ventricle Ejection 

Fraction (LVEF) is essential for early detection of cardiac disorder, effective treatment and 

improved outcomes of the affected children. 

Incorporating cutting-edge technology such as machine learning and deep learning into pediatric 

echocardiography is creating new possibilities. These advancements seem to have the potential to 

tackle and even eliminate the existing gaps and strengthen the capabilities of pediatric cardiac care 

(Slostad et al., 2023). Researchers from around the world are actively pursuing these integrations 

aiming to transform the echocardiography and enhance the quality of life for the affected children. 

Importance of Pediatric Echocardiography compared to other imaging diagnostic 

tools 

Echocardiography serves as a fundamental pillar in the field of cardiology. It provides real-time, 

relatively easily acquired, non-invasive imaging of the heart using the harmless ultrasound wave 

technology. These capabilities allow healthcare professionals to observe the heart, evaluate 

ventricular functionality, and identify any abnormalities in either the valves or the myocardium 
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with substantial detail. Thus, showcasing its critical role in cardiac image diagnostics. (Otto, 

2019).  

Especially in the field of pediatric cardiology, echocardiography is of great importance. Both 

congenital and acquired heart diseases of children present significant challenges in order to be 

diagnosed. The anatomical structures in pediatric patients are smaller, their heart rates are faster, 

and the presence of congenital anomalies can be more common (Penny et al., 2021). 

The significance of echocardiography in pediatric patients is even more important when compared 

to alternative imaging techniques such as computerized tomography (CT) scans and Magnetic 

resonance imaging (MRI) (Opfer, 2018). For the youngest patients, undergoing CT scans and 

MRIs can be particularly troublesome. In order to ensure image clarity, the patient must remain 

still. Something rather difficult for the youngest children and almost impossible for infants. Thus, 

it is often necessary to administer anesthesia to ensure no movement of the children. However, 

anesthesia not only introduces additional side effects but also emphasizes the stress and discomfort 

experienced by both the affected children and their families (Bhargava et al., 2013). 

Furthermore, cardiac MRIs require administration of contrast agents, which, even though are used 

to enhance image quality, have the potential for adverse reactions and side effects, particularly in 

pediatric populations with varying degrees of sensitivity (Bhargava et al., 2013). 

Moreover, the inevitable exposure to ionizing radiation from CT scans, raises significant concerns 

for pediatric patients. The reason is that their fastly developing cells are more susceptible to 

radiation-induced harm which might lead to long-term risks, thus strengthening the importance of 

non-radiating alternatives such as echocardiography (Chodick et al., 2009). 

All things considered, the flexibility of echocardiography, which does not involve those risks along 

with the fact that it is able to deliver accurate assessments, is important for early detection and 

treatment that can significantly improve the prognosis and life quality for these young patients. 

Additionally, echocardiography serves as a fundamental tool for monitoring the evolution of heart 

conditions and examining the effectiveness of treatment plans. It helps cardiologists to define the 

severity of the disease, plan surgical tactics if needed, and provide invaluable insights for clinical 

decision-making, therefore leading to personalized patient care (Ash & Chowdhury, 2023). 
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Additional relatively recent advancements in echocardiographic technology have made significant 

contributions to its importance in cardiology. The introduction of techniques such as three-

dimensional (ED) echocardiography, speckle-tracking and contrast echocardiography have 

expanded the capabilities of this image diagnostic method allowing clinicians to run more 

comprehensive evaluations of the heart (Kamel et al., 2022). These innovations have played a 

critical role in improving the precision of echocardiography as a diagnostic tool, particularly in 

pediatric cardiology. 

Taking everything into account, echocardiography has been the preferred method and continues to 

constitute the most efficient image diagnostic tool in pediatric cardiac diagnoses.  

Limitations in Existing Methods 

Despite the advantages compared to other image diagnostic tools, the substantial progress made in 

echocardiography and its invaluable contributions to pediatric cardiology, there still exist 

considerable drawbacks. One major challenge is the fact that conventional echocardiography 

heavily relies on trained observers who are specifically familiar with the specific equipment they 

use. Additionally, pediatric echocardiography demands a high level of expertise that involves 

sufficient knowledge of the normal growth and development of children, the plethora of congenital 

and acquired heart defects and the principles of ultrasound physics (Benavidez et al., 2008). 

In addition, even though traditional 2D echocardiography is broadly accepted and applied, its most 

important drawback is that it depends greatly on the operator. Apart from the need of them being 

highly skilled, it introduces the margin of variability in image acquisition and interpretation 

between different operators that can potentially compromise the diagnostic accuracy and reliability 

(Morbach et al., 2018). This fact is known as inter-observer variability and is particularly 

worrying given the fact that when it comes to children the need for prompt and precise heart disease 

detection is critically important. 

Furthermore, the manual analysis and interpretation of echocardiographic data can be time 

consuming and labor intensive. This is exceptionally difficult in pediatric healthcare where timely 

and accurate diagnoses are imperative. (Ash & Chowdhury, 2023). 
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Moreover, pediatric echocardiography faces difficulties related to patient cooperation and image 

quality. It can be challenging for young children and infants to fully cooperate during the 

examination process, making it rather difficult for the operator to obtain clear imaging views. Poor 

image quality furthers the complexity of diagnosis that indicates the need for development of 

sophisticated techniques and technologies to improve image acquisition and analysis in pediatric 

populations where capturing the echocardiographic videos should last as briefly as possible (Law 

et al., 2017). 

Considering all the above constraints, it is important to explore solutions and technological 

advancements that will help overcome the difficulties associated with pediatric echocardiography. 

The incorporation of automation, computer vision and deep learning, offers potential ways for 

improving the effectiveness and precision of echocardiographic assessments in pediatric 

cardiology (Madani et al., 2018). 

Research Objectives and Hypotheses 

The objective of this research is to employ computer vision and deep learning techniques in order 

to overcome the limitations that currently exist in pediatric echocardiography. The main goals of 

this study are the following: 

1. Incorporate computer vision and machine learning techniques to analyze the dataset and 

extract important insights. 

2. Utilization of the OpenCV Library to explore the echocardiographic video dataset and 

evaluate its effectiveness in processing and analyzing echocardiographic imagery. 

3. Development of a Graphical User Interface to bridge the gap between complex 

computational techniques and practical clinical use. 

4. Development of Automated Left Ventricular Segmentation Model: Develop and validate a 

deep learning model that can automatically segment the left ventricle in pediatric 

echocardiography videos. 

5. Prediction of Ejection Fraction: Building on the left ventricular segmentation model, 

predict the ejection fraction (Regression Task) aiming to improve diagnostic accuracy. 

6. Evaluation of Model Performance: Assess how well the developed models perform using 

appropriate metrics and a comparative analysis with existing models. 
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Hypotheses 

H1: A deep learning model can accurately automatically segment the left ventricle in pediatric 

echocardiography videos. 

H2: A deep learning model can predict the left ventricle ejection fraction (LVEF) in pediatric 

patients that is comparable to or even better than current methodologies. 

H3: Integrating computer vision and deep learning in pediatric echocardiography can improve 

diagnostic accuracy and efficiency. 

Justification for the Study 

The primary reason for conducting this research is the existing limitations of echocardiography 

that plays a vital role in identifying and treating congenital and acquired Cardiovascular Diseases 

(CVDs) in children. In addition, the collateral risks of other imaging diagnostic methods, such as 

CTs and MRIs. However, under no circumstances does this research attempt to undermine the 

significant importance of those methods. 

This study is both timely and relevant. On the one hand, recent advancements of artificial 

intelligence are being incorporated in medical diagnostic equipment. On the other hand, as of early 

2023, the availability of an extensive pediatric echocardiographic dataset from Stanford University 

presents a unique opportunity to develop and validate advanced deep learning models specifically 

designed for pediatric echocardiography. (Reddy C., 2022). 

Ultimately, this research aims to support the overall objectives to improve, while minimize the 

current shortcomings, the ultrasound imaging diagnostic tools for the delicate age group of 

pediatric patients and to contribute to the advancements of utilizing artificial intelligence in 

healthcare equipment. 

Thesis Structure 

This thesis is structured into well-organized chapters, each serving a specific purpose in explaining 

the application of computer vision and deep learning in pediatric echocardiography. In Chapter 1  
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Chapter 1: Introduction 

The first chapter introduces the reader to the characteristics of the heart and pediatric 

echocardiography that are referred to throughout this study, while outlining the current limitations 

as well as this research's significance, goals, and structure. 

Chapter 2: Literature Review 

Reviews the history of cardiac diagnostic methods, from obsolete techniques to current 

technologies. It discusses the integration of machine learning, emphasizes the importance of 

automation in echocardiography, and highlights the gaps and potential of using deep learning in 

diagnosing heart defects in children. 

Chapter 3: Methodology 

This chapter details the methodology followed in this study. Focused on the EchoNet-Pediatric 

dataset from Stanford, it explains the data acquisition process, provides an analysis of the dataset 

through multiple visualizations and dives into the methods for the task of left ventricular 

segmentation using traditional, machine learning and deep learning techniques. The chapter 

concludes by reaching the final goal of building a deep learning model capable of accurately 

predicting the left ventricle ejection fraction. 

Chapter 4: Results 

Reports the research outcomes, showcasing the final model's performance metrics while 

performing both a quantitative and a comparative analysis. 

Chapter 5: Discussion 

Interprets the results, emphasizing the role of computer vision and deep learning in enhancing 

pediatric echocardiography. It discusses the limitations and challenges faced throughout this study 

while providing areas for further exploration. 

Chapter 6: Conclusion 
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Summarizes the key findings and contributions of the research, strengthening the potential of 

computer vision and deep learning in pediatric echocardiography. It also reflects on the broader 

implications of the study's results for the field and provides recommendations and considerations 

for future research endeavors in this domain. 

Lastly, the study features a list of References for further reading, and Appendices containing 

supplementary material. 
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Chapter 2 

Literature Review 

Evolution of Cardiac Diagnostic Methods 

The evolution of cardiac diagnostic methods portrays a fascinating journey with tremendous 

advancements in the last decades, that reflects the broader technological progressions of 

diagnostics in Medical Science. From retiring invasive techniques to non-invasive elementary 

diagnostic tools such as stethoscopes, leading to the new era of sophisticated methods such as 

advanced imaging technologies. Cardiac diagnostics have come a long way that not only allowed 

more accurate diagnosis, but have also minimized the risks associated with invasive procedures. 

The future is just around the corner. Machine learning has already been integrated into such tools, 

but deep learning has yet to prove that it is altering the ways cardiologists and radiologists diagnose 

heart defects. 

Introduction to Cardiac Diagnostics 

The interest of research on cardiovascular diseases has been undiminished since the development 

of modern medicine. The primary methods for the evaluation of heart conditions were invasive 

and often carried associated risks. Traditional diagnostic tools like stethoscopes and 

electrocardiograms (ECGs) have served as the basis in cardiology diagnosis and remain the 

primary evaluation tools for every cardiac check-up (Kligfield et al., 2007). However, as the 

understanding of cardiovascular diseases has progressed, so has the range of diagnostic tools 

available. Now, medical experts have a plethora of tests and imaging techniques at their disposal 

to obtain a thorough view of cardiac health. The evolution of these diagnostic methods has had an 

extreme impact not only on the early detection and management of heart-related conditions, but 

also in a decrease of mortality rates over the years. 
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Role of Imaging in Cardiology 

The limitations and risks of traditional diagnostic methods have made them obsolete, making 

necessary the integration of advanced imaging technologies into cardiology. Technologies such as 

Echocardiography, Magnetic Resonance Imaging (MRI) and Computed Tomography (CT) have 

changed the field of Cardiology irreversibly. They provide detailed anatomical and functional 

insights that have been greatly important in the diagnosis of simple to complex heart conditions 

(Saeed et al., 2015). In addition, advances in imaging technology have set the basis to minimally 

invasive cardiac interventions with real-time guidance during procedures reducing the risks 

associated with traditional surgical methods (Prempeh et al., 2020). 

Advent of Echocardiography 

The introduction of echocardiography in the 1950s (Edler & Lindström, 2004) was a significant 

moment for the field of Cardiology. Unlike methods, like chest x rays and invasive angiography, 

echocardiography provided a safe, non-invasive way to diagnose heart conditions that allowed the 

visualization of the structure and function of the heart in real time. Echocardiography enabled 

cardiologists and radiologists to assess the heart anatomy, evaluate ventricular function and 

identify myocardial abnormalities. This breakthrough was not a small improvement. It completely 

transformed the landscape of cardiac care. Thus, made echocardiography an essential diagnostic 

tool, particularly in situations where early intervention can be lifesaving. (Keller et al., 2023) 

Pediatric Echocardiography 

Pediatric echocardiography is an area of expertise that focuses on diagnosing and treating heart 

conditions in children whether they are present from birth or acquired later. Unlike diagnosing 

heart problems in adults, pediatric cases come with their set of unique challenges that require 

customized approaches. Due to the size of their anatomical structures, their faster heart rates and 

the frequent presence of congenital anomalies, specialized equipment and expertise are necessary 

for accurate diagnosis and treatment. (Lai et al., 2006) 
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Role of Automation in Echocardiography 

In today's rapidly advancing world, there's an undeniable rise in the demand for imaging, 

propelling the necessity for diagnostic procedures that are not only efficient but also highly 

accurate. To address these challenges automation in echocardiography has emerged. Advanced 

software algorithms have recently been integrated to ultrasounds that can now automate 

echocardiographic processes, such as image acquisition and quantitative analysis (Asch et al., 

2019). However, they still depend on the experts to confirm their predictions, thus there is plenty 

of room for more study. This automation speeds up the diagnostic process, reduces the chances of 

human error and inter-observer variability. In addition, further advances have the potential to make 

quality cardiac diagnostics more accessible, especially for underdeveloped countries, by reducing 

costs and reliance on highly specialized personnel. (Vidal-Perez R et al., 2023) 

Need for Automation in Pediatric Cardiology 

 

The particularly alarming statistics, especially for children, and their increased over time 

diagnostic accuracy on multiple cardiovascular diseases, resulted in escalated demand for 

advanced cardiac image diagnostic methods. Even though traditional echocardiography has been 

proven invaluable for evaluating heart related problems, its existing limitations for pediatric, but 

not limited to, patients can significantly impact the accuracy and reliability of the diagnoses. In 

addition, the various diseases that rely their diagnosis on imaging methods have put a significant 

burden on healthcare systems worldwide. As technology continues to advance in the healthcare 

industry, automated ultrasounds can play a significant role in addressing these challenges by 

speeding up diagnoses, reducing the risk of human error, reducing inter-observer variability, and 

ultimately improving patient outcomes. (Karatxa et al., 2022) 

Early Attempts at Automation 

Automating cardiac diagnostics has been a topic of interest from researchers all over the world for 

quite some time. Initially the focus was on automating data collection and extracting insights. 

Although these early efforts were simple, they laid the foundation for advanced applications. 

Initially there was skepticism surrounding these endeavors due to their capabilities and high costs. 
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Nevertheless, as technology advanced these attempts were improved, leading to the development 

of sophisticated automated systems that are now considered essentials in modern cardiac 

diagnostics. (Slomka et al., 2017) 

Machine Learning in Echocardiography 

Machine learning has made significant advancements in the field of automated echocardiography. 

Machine learning models employ algorithms that learn from existing data and are able to identify 

patterns and make highly accurate predictions. This progress has opened up opportunities for 

research and clinical applications in echocardiography, especially in automatically detecting 

cardiac irregularities and providing real time guidance to medical professionals. Such algorithms 

are already integrated into the latest ultrasound systems. The ability of machine learning to handle 

big amounts of image data and generate valuable insights has revolutionized the field and paved 

the way to more efficient cardiac care. (Zhou et al., 2021) 

Challenges and Limitations 

Even though remarkable progress has been made in automating echocardiography, it has its 

limitations. A profound challenge is known as the "black box" problem. These algorithms can be 

quite complex for healthcare professionals to understand, which can undermine the trust in 

automated systems.  

 

In addition, the accuracy and reliability of machine learning applications depend heavily on the 

quality and quantity of the training data. If the data used is inaccurate or biased it can lead to 

inaccurate diagnoses that jeopardize patient outcomes.  

 

Those are the reasons behind the fact that modern ultrasound systems rely heavily on the operator's 

confirmation of the produced predictions. Lastly, the implementation of automated systems raises 

ethical considerations such as concerns regarding data privacy and potential uncertainties that may 

alter the healthcare industry. (Vandenberk et al., 2023) 
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Deep Learning in Medical Imaging 

The relatively recent technological advancements and availability of computational resources 

allowed the exponential rise of deep learning which has revolutionized various industries. This 

groundbreaking development has completely transformed how we analyze, understand and utilize 

complex data such as imaging. In the healthcare industry deep learning has made a tremendous 

impact, especially in the field of medical imaging. 

Introduction to Deep Learning 

Deep learning, a subfield of machine learning, has attracted 

attention due to its ability to analyze complex and high 

dimensional datasets using neural networks with multiple 

layers, an approach that imitates the functioning of the 

human brain neural network. Based on the principles of 

artificial intelligence, deep learning has enabled an 

unprecedented revolution in various areas, such as natural 

language processing and computer vision. 

Its effectiveness is also being acknowledged in the field of 

Medical Science, where imaging diagnostic tools are of 

great importance. As a result, it seems to be the start of a new era which may potentially completely 

transform modern medicine as we know it. 

Deep Learning in Medical Imaging 

Deep Learning has had a great impact on the domain of image analysis over the recent years; 

especially through the use of Convolutional Neural Networks (CNNs). CNNs are feed forward 

neural networks that have achieved great recognition for their ability to identify patterns in images. 

In medical imaging, CNNs have transformed diagnostic tools such as X rays, MRIs and CT scans 

by enabling accurate object recognition and semantic segmentation. Compared to traditional 

machine learning algorithms, CNNs consistently outperform them both in terms of speed and 

diagnostic accuracy, making them highly valuable. It is worth noting that deep learning has gained 

Figure 5: AI vs ML vs DL 

©TowardsDataScience 
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ground across various fields but its impact on healthcare stands out as it benefits human health. 

(Kim et al., 2019) 

Deep Learning in Echocardiography 

The use of deep learning in echocardiography is a rapidly developing area of research held for 

tasks such as image segmentation and functional assessments. U-Net architectures which were 

originally designed for segmenting biomedical images, have exhibited exceptional results in 

accurately identifying cardiac structures in echocardiographic videos (Ronneberger et al., 2015).  

In addition, advanced techniques called spatial transformer networks have been utilized to predict 

both right and left ventricular ejection fraction with impressive accuracy and represents a 

significant advancement in the automated assessment of cardiac function. These networks are 

adept at capturing both spatial and temporal features in echocardiographic videos, which are 

crucial for accurately evaluating the dynamic nature of cardiac activities. The Echonet-Dynamic 

model (Ouyang et al., 2020), for example, is a pivotal resource in this domain. These models are 

specifically tailored to parse the intricate movements and morphological changes of the heart over 

time, crucial for precise Ejection Fraction computation. The spatial component allows the detailed 

mapping of cardiac structures, while the temporal aspect captures the rhythmic contraction and 

relaxation cycles of the heart. This combination is crucial for understanding the nuanced variations 

in cardiac function, particularly in the context of Ejection Fraction, which is a key indicator of 

cardiac health. 

These advancements are greatly significant in echocardiography, where measurements of high 

accuracy and timely diagnoses can have a huge impact on both patients and doctors. The utilization 

of Deep Learning and its capabilities has initiated a new era of echocardiography research where 

there will be limited dependance on human operators. (Krittanawong et al., 2023) 

Performance Metrics 

To determine the effectiveness of deep learning models in echocardiography, it is imperative to 

use specific performance metrics that depend on the task at hand. While basic measures like 

accuracy may be suitable for certain tasks, sensitivity (aka Recall, True Positive Rate) and 

specificity (True Negative Rate) are more suitable for classification assignments. Specifically in 
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medical research they are used to evaluate the effectiveness of the alternative test compared to the 

“gold standard” (Hariton & Locascio, 2018). For image segmentation tasks, the Dice coefficient 

is greatly accepted and it measures how well the segmented images match the ground truth images 

(Zhu et al., 2004). When evaluating models that predict the ejection fractions (regression), the 

coefficient of determination or 𝑟2 provides the most reliable criterion. Carefully selecting the 

appropriate performance metrics not only ensures the comprehensive validation of the deep 

learning models, but also paves the way for successful implementation within clinical settings. 

Research Gaps and Future Prospects 

As the field of echocardiography begins to explore the possibilities offered by machine and deep 

learning advancements, it becomes important to explore existing research gaps and possible 

avenues for further development. (Lopez-Jimenez et al., 2020) 

Identifying the Gaps 

Lack of Large-Scale, Diverse Pediatric Datasets 

A notable drawback in echocardiographic research is the lack of datasets specifically focused on 

pediatric cases. Most available datasets either come from adult cases (Ouyang et al., 2020) or lack 

the necessary diversity to effectively develop and evaluate robust deep learning models. This 

limitation makes it difficult to generalize the study findings to the field of echocardiography. 

Need for More Reliable and Clinically Validated Models 

Over the last decade, there has been an increase in the development of such models for 

echocardiography. However, there is a need for those models to be clinically validated. Although 

many of these may demonstrate remarkable results on some metrics, they often either fall short in 

establishing their clinical reliability to real-world case scenarios or lack comparisons with expert 

opinion in real-world clinical settings. This gap is a barrier to the adoption of automated systems 

in clinical settings. 
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Future Prospects 

The Potential of Integrating AI Models into Clinical Workflows 

We approach the dawn of a new era in healthcare where there is tremendous potential for 

incorporating artificial intelligence into existing clinical equipment. The integration of machine 

and deep learning in echocardiography, and medical imaging in general, holds the potential to not 

only revolutionize this equipment, but also redefine the medical diagnostic procedures. This will 

give the opportunity to healthcare professionals to receive automated more precise and dependable 

results with minimal interaction with the equipment, while allowing them to focus their attention 

on other more complex diagnostic challenges. Ultimately, Artificial Intelligence (AI) in healthcare 

has the ability to enhance patient outcomes, reduce healthcare expenses and establish more 

effective diagnostic procedures into the healthcare system. 

Importance of Interdisciplinary Collaboration 

The future of echocardiography research goes beyond technological advancements. It also 

involves the promotion of interdisciplinary synergies (Basu et al., 2020). As this field advances 

the collaboration between data scientists, clinicians, radiologists and cardiologists becomes 

increasingly vital. These partnerships form the foundation for developing solutions that are not 

only technologically innovative, but also reliable in a clinical setting. The union of technology, 

expertise and practice can have a catalytic impact on medical research findings that hold the 

potential of unprecedented imaging diagnostic methods. 
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Chapter 3 

Research Methodology 

Acquiring the Dataset 

The dataset used in this study was acquired from Stanford's Center for Artificial Intelligence in 

Medicine & Imaging (AIMI). The Stanford AIMI Center was established in 2018 and its mission 

is to empower artificial intelligence research for solving clinically important problems. 

The specific dataset acquired is called EchoNet-Pediatric and it includes the first large pediatric 

video dataset of echocardiograms with human expert annotations for computer vision research as 

of today. It was published in Stanford’s AIMI Shared Datasets in January 2023. The size of the 

dataset is 2.51GB and it includes avi and csv files. 

The dataset is Licensed under Stanford University Dataset Research Use Agreement (Appendix 

A). Thus, the author of this thesis has acquired access by registering to the platform, accepted the 

terms and is personally fully bound by them. 

The choice of this dataset was motivated by several factors. The fact that it is the first extensive 

collection of labeled pediatric cardiac videos makes it ideal for training robust machine learning 

models, while providing a great opportunity for unique research in the form of the thesis that 

incorporates a variety of knowledge subjects acquired in the scope of the master’s in Data Science 

at the American College of Greece. Additionally, the fact that it involves the delegate pediatric 

population where early and accurate diagnosis is of critical importance. Lastly, on a personal note, 

my personal struggles with myocarditis have deepened my familiarity with the cardiac structures 

that fueled my passion for this research. 
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Dataset Description 

The EchoNet-Peds database consists of 7,643 labeled echocardiogram videos from pediatric 

patients imaged between 2014 and 2021 as part of routine clinical care at Lucile Packard 

Children’s Hospital at Stanford. All videos underwent cropping and masking to exclude text and 

irrelevant data outside the scanning sector. Subsequently the processed images were then down 

sampled using cubic interpolation into standardized 112x112 pixel videos. 

The typical echocardiography procedure includes a series of videos and images that are extracted 

by visualizing the heart from different angles based on the position of the transducer. However, 

this dataset focuses on videos from two specific views, subsequently it is divided into two parts. 

3,176 Apical 4-Chamber (A4C) echocardiography videos and 4,424 Parasternal Short Axis 

(PSAX) echocardiography videos. 

  

 

Figure 6: Apical 4-Chamber and Parasternal Short Axis angles and corresponding echocardiograms 

©pocus101.com  

  

For each video category (A4C and PSAX) the dataset presents two csv files named FileList.csv 

and VolumeTracings.csv each containing different human expert annotations (measurements, 

tracings, and calculations). Each csv file contains the file name of the video, thus allowing the 
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merging of varied data within the dataset. The primary contains demographics of the pediatrics 

patient: Sex, Age, Weight, Height as well as the EF annotated by the experts, while the latter 

contains coordinates and frame number denoting the areas of two time points (frames) representing 

the End Systole and the End Diastole. 

Technical acquisition of data. 

Every patient's study is associated with clinical measurements and calculations obtained by a 

registered sonographer and verified by an expert physician echocardiographer as part of the regular 

clinical procedure. The method employed to determine the ejection fraction in the pediatric dataset 

is the “Bullet Method” or the “5/6 Area Length Method,”. This method calculates left ventricular 

volumes using both the apical and parasternal short axis perspectives. In the dataset, for each video, 

the left ventricle is traced at the endocardial border at two distinct moments: End Systole and End 

Diastole. Each tracing is used to estimate ventricular volume by integration of the ventricular area 

over the length of the major axis of the ventricle. The expert tracings are represented by a collection 

of paired coordinates corresponding to each human tracing. 

Working Environment 

Throughout this thesis, the programming language used was Python, version 3.10. Python is a 

versatile, high-level programming language that is widely used in data analysis, web development, 

artificial intelligence, and many other fields.  

For the development and execution of code, PyCharm Integrated Development Environment 

(IDE), specifically version 2022.3.2 of the Professional edition was used. PyCharm, developed by 

JetBrains, provides a comprehensive set of tools for Python developers, including intelligent code 

completion, code analysis, and integrated testing.  

Pre-processing. 

The dataset is well organized in a tree model. The folder pediatric_echo_dataset contains two 

subfolders A4C and PSAX, that each contains a subfolder named videos and the two csv files, 

FileList.csv and VolumeTracings.csv (Appendix B) 
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Figure 7: File System Hierarchy 

Data Organization and Cleaning 

Navigating through the dataset it is apparent that it contains complexities that rely on the fact that 

for each context addressed in this thesis different sub-datasets are needed. Each research question 

or analytical task demanded the unification of different parts of the dataset depending on the task 

at hand. Such an approach ensured that for every analytical task there was a sub-dataset tailored to 

its specific needs. However, it is important to note that the A4C video angle was the primary focus 

of the study due to its significance for evaluating the Left Ventricle Ejection Fraction. 

  

To comprehensively process, clean and structure the appropriate data set in order to extract 

insightful knowledge and create statistics, the integration of the demographic information that is 

contained in the “Filelist.csv” and both Apical 4-Chamber (A4C) and Parasternal Short Axis 

(PSAX) videos were used. 

  

The data preprocessing began with the goal of creating a thorough dataframe for demographics 

and video observations. Starting with defining utility functions, one to extract the patient ID from 

each filename, others to compute the number of data frames and the duration of the videos 

incorporating appropriate cv2 library’s functions. The datasets from both A4C and PSAX folders 

were loaded and processed separately and the information of each was stored into two distinct data 

frames that subsequently merged in one on the Patient ID column. 
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To comprehensively explore the dataset, it was essential to examine all 

the possible scenarios. This was achieved by employing the union 

operation of set theory which in python is incorporated as a full outer 

join. Thus, the resulting merged data frame captures all the possible 

outcomes; instances where A4C videos correspond with PSAX videos 

and vice versa, as well as cases where a video in one category lacks a 

corresponding video in the other. 

After merging the datasets, the next step involved a thorough examination of missing values in the 

final dataframe. As anticipated, there was a discrepancy between the number of A4C and PSAX 

videos. Additionally, the demographic details from both csv files were cross checked. This served 

a dual purpose. On the one hand to check the correctness of the merge operation of all the sub 

datasets, and on the other, to ensure that the videos corresponding to each patient ID were 

accurately paired. 

Specifically, videos without the Apical 4-Chamber (A4C) view were identified and excluded from 

the dataset, given the primary focus of this thesis on Apical 4-Chamber (A4C) videos. To maintain 

dataset integrity, data rows with missing weight (9 data points), height values (15 data points), or 

gender values that were neither male [M] nor female [F] (12 data points) were omitted. 

Additionally, a discrepancy involving duplicate PSAX videos for identical patient IDs was 

resolved. The data frame was sorted in descending order based on the number of frames for both 

A4C and PSAX videos, grouped by patient ID, with only the first entry (longest video) retained 

for subsequent tasks. 

As a result, out of the initial 3176 A4C videos the final data frame contained 3149. All insights 

were exported to an excel file for further verification. (Appendix C) 

Visualizations and Data Exploration 

With the dataset now cleaned and organized, the focus shifts to detailed analysis. Utilizing 

statistical methods and visualization tools, key insights and patterns within the pediatric cardiac 

data will be identified. Subsequent sections will present these findings in a structured manner. 

Figure 8: Union of Sets 
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Variability in A4C Echocardiogram Video Length Across Pediatric Age Groups: A Comparative Analysis 

of Frames and Duration 

 

Figure 9: Frames per video per age and their corresponding duration 

The data spans 18 distinct age groups, from newborns (age 0) to adolescents (age 18). The side 

legends provide useful statistical insights, such as the mean and maximum frames and duration. 

The number of frames varies widely and subsequently the duration, since they are directly related, 

across different ages. This suggests that the number of frames of the echocardiographic videos is 

not consistent, something that will play an important role later in this study. 

Moreover, it is profound that the higher the age the longer the video duration which is directly 

linked to the patient’s cooperation. In addition, there is a dense cluster of data points in the lower 

age range, particularly between ages 0 and 5, indicating that the dataset contains more data for 

younger ages, possibly due to congenital heart defects. Lastly, there are several outliers across 

different ages, particularly noticeable at ages 1, 3, 4, and 17 that are significantly longer than the 

typical videos for that age group.  
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Pediatric Ejection Fraction Distribution with Critical (Below 40%) and Cautionary (40%-50%) 

Thresholds 

 

Figure 10: Distribution of Ejection Fraction, color categorized and Cautionary Thresholds 

The plot has two vertical dashed lines that represent the two clinical thresholds. EF values that are 

below 40%, red-shaded area, indicate a severe heart defect where the heart cannot effectively pump 

oxygenated blood to the body. Values between 40% and 50%, orange-shaded area, indicate a mild 

reduction, and lastly values above 50%, blue-shaded area, that are considered normal. 

The distribution plot shows a notable concentration of normal EF values in contrast to the other 

two regions showcasing that the dataset is skewed to the normal EF region. Even though a 

substantial portion of the dataset indicates a general healthy cardiac function among the observed 

children, there is a non-negligible presence of a subset of the population that exhibits not normal 

cardiac function. 
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Gender-wise Distribution of Ejection Fraction and Its Variability Across Pediatric Age Groups 

 

Figure 11: Gender Distribution Plot 

There is a noticeable imbalance in the number of male (1808 data points) and female (1351 data 

points) pediatric patients, with more data available for males. The imbalance in gender distribution 

could potentially introduce bias in subsequent analyses. 

F  

Figure 12: Gender-wise EF distribution in a violin plot 

Overall, both genders exhibit similar EF distributions, with a significant skew towards higher EF 

values. The median appears to be quite similar between the two genders, indicating comparable 
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central tendencies, however the male distribution appears slightly more compact around the 

median compared to females. 

 

Figure 13: EF Distribution in different age groups in box plots 

The boxplot shows a considerable variability in EF ranges within each age group while all age 

groups present outliers, however infants show notably wider interquartile range. This showcases 

the impact of congenital cardiac defects. The median EF values appear relatively stable across 

different age groups, indicating consistent central tendencies in cardiac function despite age 

variations.  
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Exploration of  the dependencies Among Age, Weight, Height, and Ejection Fraction in the Pediatric 

Dataset 

 

Figure 14: Scatter matrix of demographics and EF, showing linear correlations. 

The scatter matrix (Seaborn, n.d.) provides a visual exploration of potential relationships between 

pairs of features and can provide further insights using multivariate analysis techniques. It is 

profound that there are relatively linear relationships both between Weight and Height, and 

between Height and Age, aligning with anticipated child growth and development. On the 

contrary, the relationship between Age and Weight is lacking linearity, especially for ages above 

seven, potentially highlighting the influence of childhood obesity on cardiac function. 

Furthermore, in certain subplots, such as Ejection Fraction (EF) versus Weight, definite outliers 
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are observed. Taking everything into account, by investigating all three features (age, weight, 

height) compared to the Ejection Fraction (EF) none of them demonstrate a clear linear 

relationship, indicating that the Ejection Fraction (EF) is not linearly predictable solely based on 

these variables. 

Video Preprocessing Part 1 

Introduction  

Echocardiography provides a visual window into the heart that offers important details about the 

heart's structure and functioning. The Apical 4-Chamber (A4C) view is particularly important 

since it allows the operator to observe all four chambers of the heart and assess the functionality 

of the atrioventricular valves. 

The objective of the video preprocessing stage was to explore the video data using traditional 

computer vision techniques and explore the likelihood of automatically segmenting the left 

ventricle.  

Managing a dataset with video data presents challenges due to its heterogeneity, especially when 

compared to more uniform datasets, such as those in Excel, CSV, or JSON formats. To navigate 

through these challenges efficiently, a graphical user interface (GUI) has been employed, enabling 

easy, quick, and effective examination of the dataset by incorporating multiple techniques from 

the OpenCV libraries. 

Developing an Interactive Platform through a GUI 

The exploration of the echocardiographic video data began with the design and development of a 

graphical user interface (GUI) by taking advantage of the capabilities of the PyQt6 library 

(Riverbank Computing, n.d.). PyQt6 is a set of Python bindings of the Qt toolkit which is a 

robust cross-platform framework that provides multiple tools for graphic user interface (GUI) 

creation. This strategy was selected not only to provide a user-friendly platform that can allow 

users to interact with the Apical 4-Chamber (A4C) videos, but also serves as a holistic analytical 

environment for video preprocessing tasks. 
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Figure 15: Graphical User Interface based on PyQt6. 

GUI Components and User Interaction 

The graphical user interface (GUI) is architecturally structured to include various widgets, such as 

video display labels, buttons, sliders, and checkboxes, each meticulously incorporated to facilitate 

fluid user interaction with the echocardiographic data. 

The interface is divided into three distinct frames, each designed for a specific purpose. The left 

frame, or layout as denoted in PyQT6, allows the user interactivity with multiple image processing 

functionalities. Meanwhile the right frame is partitioned into the top and bottom layouts, where 

the former is dedicated to always display the original video and the latter to dynamically display 

the processing results of the echocardiographic videos based on the filters chosen by the end user 
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in real time. This structure offers an immediate visual comparison and enables the exploration of 

the impact of various computer vision processing techniques on the visual data.  

Utilizing OpenCV for In-Depth Analysis of Cardiac Morphology 

OpenCV is pivotal to multiple methodologies in this study (OpenCV, n.d.) due to the dataset. 

Abbreviated from "Open-Source Computer Vision", OpenCV is an open-source computer vision 

and machine learning framework that offers a plethora of functionalities enabling the exploration 

and analysis of visual data through various image processing techniques. It is widely used across 

diverse domains for real-time image processing tasks; however, the rise of deep learning tends to 

minimize its usage due to the fact that certain tasks can be time consuming and sensitive to changes 

especially when it has to deal with not so homogenous datasets. Nevertheless, it is the de facto 

way for certain tasks such as image/video reading, data augmentation, tracking objects and other 

simple computer vision implementations. 

In the context of echocardiographic video data, OpenCV is employed to conduct a meticulous 

analysis of the anatomical structures observable in the video frames, since the library allows the 

application and fine-tuning of numerous filters and morphological operations on structural 

elements of the heart as well as an attempt to segment the left ventricle of the heart 

echocardiographic data. 

Images and videos: A Sequential correlation. 

The term image processing refers to the analysis and manipulation of a digitized image, while a 

video represents a sequence of images over time. Mathematically, images are constructed as arrays 

of numerical values, ranging between 0 and 255, where each value corresponds to a pixel’s 

intensity. For color images, there are 3 primary channels (most encountered RGB representing red, 

green and blue). Each channel encodes the intensity of its respective color for any pixel in an 

image.  

In the context of this study on echocardiographic data, each video provided consists of a sequence 

of frames (images), capturing the dynamic movements and changes in the heart's chambers and 

valves over time. This allows the understanding not only of spatial features and patterns within 

each individual frame but also of sequential patterns and changes occurring across frames. 



34 

 

Given the fact that the video data size is 112x112, which is considerably small, a conscientious 

decision was made to resize the videos to 400x400 to ensure proper depiction in the graphic user 

interface (GUI). By using OpenCV’s resizing functionality, which augments the pixel count in 

both the horizontal and vertical dimensions, allowed more spacious visuals without compromising 

image quality, allowing more effective inspections. 

 

Figure 16: Original 112x112 size (left) vs Magnified 400x400 size (right) 

Interactivity, Grayscale Conversion, Histogram and Enhancement: 

The process of selecting a new echocardiographic video is facilitated through a 'Select Video' 

button, which triggers a file dialog window, allowing the user to navigate through the filesystem 

and select the desired video. 

The EchoNet-Pediatric dataset consists of 3-channel videos. Given the complexity and high-

dimensionality associated with processing three-channel data and the need to homogenize the 

dataset, the initial processing step requires the conversion of the frames into grayscale.  

 

Figure 17: 3-channels videos 
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When this is selected within the graphical user interface (GUI), a real time histogram of the 

grayscaled video frames is displayed in the bottom-left section, providing a visual representation 

of the pixel intensity distribution across the images. This frame-by-frame image histogram allows 

insights about the brightness levels of the sequential images. 

 

Figure 18: Histogram of a single frame 

To further enhance the visual understanding of the echocardiographic data, histogram equalization 

is employed as an optional mechanism to amplify the contrast within the images. This method 

essentially redistributes the dominant intensity values across the image, enhancing the contrast 

between lighter and darker areas. However, in the context of echocardiography this method did 

not prove beneficial since it introduced a considerable amount of noise into the frames, making it 

almost impossible for additional OpenCV techniques to perform properly. 

 

 

Figure 19: Original (left) vs Histogram Equalization (right) 
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Figure 20: Their corresponding Histograms 

Filter Application and Morphological Operations. 

The constant movement of cardiac muscles results in ultrasound noise across the frames. The 

implementation of smoothing filters through OpenCV, specifically Gaussian and Median, were 

considered beneficial to refine the visual quality of the echocardiographic images and reduce the 

noise and detail in an attempt to distinguish the myocardium. The Gaussian filter employs a 

Gaussian-distributed kernel surrounding a pixel and replaces it with the value of its local 

neighborhood. On the other hand, the Median filter, good at preserving boundaries, replaces each 

pixel value with the median of neighboring pixels, particularly effective in dealing with salt-and-

pepper noise. The user can select the kernel size, with values between 3 and 17 and both filters 

provide a smoother visual output, with the Gaussian offering a more natural blurring, thus ensuring 

a denoised and more visually coherent result. 

 

Figure 21: Original Frame (left) vs Median Blur (Middle) vs Gaussian Blur (right) (kernel 11x11) 

Morphological operations such as erosion, dilation, opening, and closing are included to give the 

user more control over the morphological analysis of the echocardiographic images. Erosion 

makes the edges of objects in the foreground smaller, usually used to reduce object size in an 

image, while dilation does the opposite, often used to fill in small holes and connect separate areas. 

Opening, which is erosion followed by dilation, and closing, which is the opposite, are especially 
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good at removing small noise from the foreground and background respectively. Through the 

graphical user interface (GUI), users can enable these operations allowing adjustments to further 

refine the segmentation of structures within the images. 

 

Figure 22: Erosion (left), Dilation (center left), Opening (center right), Closing (right) (kernel: 11x11) 

Edge Detection and Structural Analysis 

In the pursuit of extracting structural boundaries in order to segment the left ventricle the Canny 

Edge detection algorithm was employed in order to display important outlines within the 

echocardiograms. The graphical user interface (GUI) allows the user to set the upper and lower 

threshold values, which is key to making the algorithm work well with different echocardiograms 

allowing the edge detection to adjust to different visibility and contrast conditions in different 

echocardiographic data. Thus, this interaction makes sure that the edge detection is strong and 

flexible, while efficiently handling the varied and dynamic nature of the echocardiographic 

images. 
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Figure 23: Original Frame (left) vs Canny Edge of the grayscaled and Gaussian blurred (right) 

This edge detection method not only shows the structural lines within the images but also creates 

the base for more analyses, such as finding contours or attempting to segment regions. 

Incorporating Volumetric Tracings for Enhanced Analysis 

Navigating further through the complexities of the EchoNet-Pediatric dataset, the incorporation of 

the volumetric tracings enabled a more integrated and functionally insightful exploration. 

Volumetric tracings are provided in VolumeTracings.csv. Specifically, the file contains, for each 

video, a pair of frames and coordinates for each frame denoting the polygon vertices of the areas 

of the left ventricle during diastole and systole. These were implemented as Regions of Interest 

(ROI) – Contours displayable in the graphic user interface (GUI). 
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Figure 24: End Systole on grayscaled Frame (left) and End Diastole after Canny Edge 

A major aspect of this process was the adjustment of contour coordinates in accordance with the 

frame resizing, ensuring their consistent and accurate overlay on the echocardiographic images. It 

is worth noting that the original frame dimensions were retained to enable precise scaling and 

adaptation of the contour points to the resized frames. Furthermore, as for the visualization process 

it was important to ensure that the contours were visually apparent and did not distort the 

underlying echocardiographic data. Thus, the contours were drawn in a distinctive blue color, 

providing a clear separation from the grayscale frames, thereby ensuring optimal visual clarity. 

Consequently, the interface allowed for dynamic interaction with the visual data. The user has the 

option to toggle the display of contours on and off, facilitated by a designated button on the GUI. 

This button was constructed to be informative, changing color based on its state (green when 

active, red when inactive), providing a clear visual indicator to the user regarding the status of the 

contour display. Moreover, a checkbox within the GUI provided an additional layer of user 

interaction, enabling the selective display of contours based on user preference. 

In essence, the integration and dynamic visualization of contours, meticulously synchronized with 

the echocardiographic data, provided a comprehensive and insightful analytical platform, enabling 

a deeper understanding of the diastolic and systolic volumes of the left ventricle.  
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Segmenting the left ventricle 

The early steps into processing and analyzing the EchoNet-Pediatric dataset provided both insights 

and challenges, especially when attempting to segment the left ventricle. Even though the 

methodology, which was leaned on traditional image processing techniques using OpenCV, 

demonstrated success in preprocessing individual frames, its application across subsequent frames 

was less effective. The noise in the echocardiographic videos and the small, quick movements of 

the heart muscle made it hard to analyze and segment the left ventricle in the frames, in spite of 

the meticulous application of filters and edge detection. Recognizing these challenges, a second 

attempt was made leveraging more sophisticated OpenCV operations.  

 

Video Preprocessing Part 2 - Engaging with Different Views and Advanced Techniques 

Introduction 

In the previous section, the journey through EchoNet-Pediatric dataset was focused on the Apical 

4-Chamber (A4C) view, utilizing traditional image processing techniques. Moving forward, the 

journey continues by widening the scope to include the Parasternal Short Axis (PSAX) videos 

while delving deeper into advanced OpenCV techniques and at the same time incorporating the 

whole EchoNet-Pediatric dataset. While the Apical 4-Chamber (A4C) view displays all four 

cardiac chambers, PSAX view offers a vertical perspective to the A4C view focused on the mitral 

valve. Thus, by incorporating both angles the visual inspection through the different 

echocardiographic angles of the heart is provided integrating the complete extension of the dataset. 
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Figure 25: Second Graphical User Interface with both A4C and PSAX vies 

The new graphical user interface (GUI) 

The new graphical user interface (GUI) consists of three layouts. The left, the middle and the 

right. The primary contains the user options and the histograms of both views, the middle 

displays the Apical 4-Chamber (A4C) view of both the original and the filtered frame, while the 

last the Parasternal Short Axis (PSAX) respectively.  

OpenCV Techniques in Focus: Exploring Beyond Basics. 

Based on the challenges of the basic preprocessing and visualization step a new extended program 

was created aiming to dive into more advanced OpenCV techniques while at the same time trying 

to maintain a minimalistic approach to available filters in order to ensure consistent application 
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across multiple frames and videos. This philosophy aligns eloquently with Leonardo da Vinci's 

saying: "Simplicity is the ultimate sophistication." 

Adaptive Thresholding and Gaussian Blurring: Highlighting Essential Details while Denoising Preserving 

Structures 

Firstly, adaptive thresholding is implemented with OpenCV, which involves determining the 

threshold for a pixel based on a small region around it. Thresholding is identical to deciding a rule: 

"if a part of a frame is brighter than a certain level, color it white; if it's darker, color it black." This 

allows to display shapes more clearly by turning the frame into a simple black and white image 

where significant shapes stand out. But, with just one rule for the whole frame, it might be possible 

to lose details in the too-dark or too-bright parts. That is where "adaptive thresholding" comes into 

play. Essentially it introduces incorporation of different brightness rules for different parts of the 

frame by exploring small regions of the frame deciding a suitable rule for each one, thus helping 

to keep important details. This way, even if a part of the frame is in shadow or is too bright it 

preserves essential details. 

 

Figure 26: Adaptive Thresholding in both A4C and PSAX views 

In the context of echocardiographic videos, where light and shadows may vary considerably across 

different regions, adaptive thresholding preserves important details that a global threshold might 

obscure. Adaptive Thresholding coupled with Gaussian blur, which is used to smoothen the image 

by reducing the characteristic ultrasound noise, proved especially beneficial. Gaussian blurring in 
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contrast to other blurring methods was chosen since it tends to preserve edge structures, which is 

crucial when analyzing anatomical structures such as the chambers and valves of the heart. 

 

Figure 27: Gaussian Blurring and Adaptive Thresholding in both A4C and PSAX views 

Canny Edge Detection: Identifying Boundaries 

The use of the Canny Edge Detection algorithm was kept due to its ability to detect edges even 

under noisy conditions such those in echocardiographic frames that might be helpful in facilitating 

the segmentation of the left ventricle.  

Embracing Simplicity Revealed New Challenges. 

By strategically selecting advanced techniques and limiting the tuning parameters, the 

methodology not only became computationally efficient but also more robust and applicable to the 

rather complex EchoNet-Pediatric dataset. However, it was during this exploration that the data 

set , particularly the Apical 4-Chamber (A4C) view, revealed its additional complexities. 

Through trial and error across multiple videos, it was unveiled that the Apical 4-Chamber (A4C) 

sub-dataset is not as homogenous as initially anticipated. Encountering multiple views, with 

various rotations, some displaying only the left ventricle, others being excessively noisy, and a 

few featuring significant elements added by the ultrasound machine, introduced the necessity of 

clustering the dataset. This is where machine learning principles were integrated to manage these 

discrepancies, aiming to divide the dataset into homogeneous parts. 



44 

 

Machine Learning: Clustering for Homogeneous Analysis 

I. Feature Extraction from Apical 4-Chamber (A4C)  and Demographics Datasets 

The initial phase of the analysis aimed at meticulously extracting appropriate features from the 

two principal datasets, the Apical 4-Chamber (A4C) videos and the demographic data. This 

thorough extraction was pivotal for the analysis and clustering of the dataset into an appropriate 

number of sub-datasets that would be homogenous enough for the subsequent task of potentially 

segmenting the left ventricle from the cardiac ultrasound videos using OpenCV. The extracted 

features not only include the critical visual aspects of the ultrasound data but also the crucial 

demographic details, attempting to incorporate relevant futures across the dataset. 

1. Computation of the Average Image 

Through OpenCV library, each frame of the video was converted into a grayscale format to 

minimize the computational complexity and emphasize the structural aspects of the images and 

each video in the dataset was processed to yield an average image computed by calculating the 

mean across all frames, which was subsequently used as a representative snapshot of the video for 

further analysis. 

2. Extraction of Features via GLCM and Histogram Techniques 

Following the acquisition of the average image, the feature extraction process was executed by 

employing the Gray Level Co-Occurrence Matrix (GLCM) and histogram techniques. The GLCM 

(scikit-image, n.d.) is a statistical method that allowed the extraction of texture features that 

consider the spatial relationship of pixels, thus allowing to obtain features such as contrast, 

dissimilarity, homogeneity, Angular Second Moment (ASM), energy, and correlation. It is 

important to note that there has been substantial research utilizing GLCM texture analysis in 

ultrasound data (Yang X, 2012) In addition, higher-order statistical features commonly used in 

image analyses such as entropy (a measure of randomness or disorder), energy, and smoothness 

were derived to provide a more in-depth understanding of the image textures. (The first-order 

involves the mean, median and mode, while the second-order the variance and standard deviation). 

Simultaneously, histogram features were extracted which provided a statistical representation of 

the pixel intensity distribution of the images. 
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3. Integration with Demographic Data 

After the feature extraction, the derived features were merged with the existing demographic data, 

resulting in a comprehensive dataset that also includes vital clinical and demographic details. This 

mixture of data ensured a rich dataset, providing a robust foundation for the following phases of 

analysis and clustering. This dataset was stored in a structured format excel file (Appendix D), 

serving as the needed input for the following phases of Principal Component Analysis (PCA) and 

clustering. 

II. Dimensionality Reduction and Clustering of the Feature Space 

The feature dataset was intentionally high-dimensional, including multiple factors that characterize 

each video, in order to enable more accurate clustering through the process of dimensionality 

reduction. This process is suitable for focusing on the most important information, facilitating 

easier data grouping into clusters while also allowing more interpretability of the results. 

1. Principal Component Analysis (PCA) 

Principal Component Analysis PCA (scikit-learn, n.d.) was employed as a mathematical 

technique to reduce the feature space, with a meticulous emphasis on retaining maximal variance 

and thus, preserving the essence of the original data. This technique transforms the original 

features into a new set of uncorrelated variables, called principal components, which are linear 

combinations of the original variables. It is important to note that after importing the file it was 

crucial to scale the features using the Standard Scaler (scikit-learn, n.d.) ensuring that all of them 

contributed equally to the Principal Component Analysis (PCA). 

2. Analysis of Explained Variance 

A thorough investigation into the explained variance was executed to determine the optimal 

number of principal components to be retained for subsequent analyses. The analysis included 

evaluating the percentage of the total variance of each principal component “explained”. Then, a 

plot of the cumulative explained variance against the number of components was utilized to 

visually determine a suitable cutoff. 
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Figure 28: Cumulative Explained Variance with infographics to determine the optimal number of components 

The cumulative explained variance plot revealed a crucial insight into the proportion of total 

variance encapsulated as the number of principal components increased. Particularly, the first three 

principal components encapsulated approximately 61.34% of the total variance in the dataset, 

suggesting a significant reduction from the original 277-feature space. The decision to select n=3 

principal components was made by several strategic considerations. Firstly, choosing three 

components allowed an intuitive and interpretable graphical representation of the clusters. 

Secondly, the choice ensures computational efficiency and model simplicity in subsequent 

analyses, providing a careful symmetry between reducing dimensionality while still maintaining a 

substantial amount of the original information.  

To further explore the feature importance in the three principal components, the following plot 

was employed. 



47 

 

 

Figure 29: Feature Importance in Each Components to draw insights related to the initial features. 

Each bar represents a feature from the original dataset, and its height signifies the loading of that 

feature in the respective principal component (PC1, PC2, and PC3). The loading essentially shows 

how much a feature contributes to that component. Positive and negative values suggest the 

direction of the correlation between the original feature and the principal component.  

The following features emerge as pivotal across the first three principal components: 

PC1 (Principal Component 1): The dominant contributors include "Mean", "Std Deviation", 

"Smoothness", along with the histogram features "Hist_133" and "Hist_127".  

PC2 (Principal Component 2): This component is mostly influenced by several histogram features: 

"Hist_215", "Hist_221", "Hist_216", "Hist_222", and "Hist_212".  

PC3 (Principal Component 3): The leading contributors are histogram features: "Hist_30", 

"Hist_31", "Hist_33", "Hist_32", and "Hist_29". 

These insights suggest that the first principal component (PC1) encapsulates general statistical 

properties of the images, while the second and third principal components (PC2 and PC3) capture 

variations in the pixel intensity distributions from different parts of the histogram. 
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III. Cluster Analysis 

Upon reduction of the feature space, the aim transitioned towards partitioning the dimensionally 

reduced feature space into coherent clusters, each representing distinct variations within the A4C 

video data.  

1. Determining the Optimal Number of Clusters. 

To decide on the optimal number of clusters for the clustering algorithms, both the elbow method 

and the dendrogram analysis were employed.  

Elbow Method (Analytics Vidhya, 2021): A technique used to identify the optimal number of 

clusters by plotting the inertia of different numbers of clusters. The inertia is the sum of squared 

distances of samples from their closest cluster center. The point where the decrease in inertia 

begins to slow down ("elbow" point) is considered an indicator of the optimal number of clusters. 

 

Figure 30: Elbow Method for PCA for both n=3 and n=140 components to determine the optimal number of 

clusters. 

Dendrogram Analysis (SciPy, n.d.).: Dendrograms are tree-like diagrams that visually represent 

the results of hierarchical clustering. They display how data points are grouped together step-by-

step in a tree structured way. By examining the lengths of the branches, which indicate the 

dissimilarities or distances between clusters, one can decide on the optimal number of clusters. 

Typically, a longer branch length indicates a larger dissimilarity, and cutting the dendrogram at a 

specific height allows for the determination of distinct clusters. 
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Figure 31: Dendrograms to confirm the optimal number of clusters 

Notably, the analyses via both the elbow method and dendrogram were performed on the data in 

two different PCA component spaces (3 and 140) in order to ensure the number of clusters. 

Remarkably, both indicated that the optimal number of clusters is four. This was particularly 

important and showed that despite the great difference in dimensionality, the clustering of the data 

remained consistent, showcasing the robust clustering within the data. 

2. K-Means Clustering 

The K-Means clustering (scikit-learn, n.d.) algorithm was utilized. This method breaks down data 

into ‘k’ groups, or 'clusters', based on their similarity. The center of each cluster is found by 

averaging all its data points. The goal is to make sure data points in the same cluster are close to 

each other. The algorithm keeps adjusting the groups and their centers until the best arrangement 

is found. 

3. Agglomerative Clustering 

Agglomerative clustering (towardsdatascience.com, 2019), a hierarchical clustering technique, 

was also employed. This method starts by treating each data point as a single cluster and then 

gradually combines them based on how similar they are. The similarity is often measured by how 

close the points or clusters are to each other. As the points come together, a tree-like diagram called 

a dendrogram is created. 
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4. Bisecting K-Means Clustering 

Bisecting K-Means (medium.com, 2020) clustering was employed as an additional clustering 

strategy, which recursively partitions the data into two clusters at each level until a specified 

number of clusters is reached. This method works by continually splitting data into two parts, while 

at each step ensuring that the most similar data points stay together. It keeps going until it reaches 

the number of groups needed. This method offers a balance between the simplicity of K-Means 

and the hierarchical detail of agglomerative clustering. 

5. Bisecting K-Means Clustering with Manhattan Distance 

A variant of the bisecting K-Means algorithm was also explored, where instead of the typical 

Euclidean distance, the Manhattan (Science Direct, n.d.) distance metric was employed during 

the clustering process. This distance metric calculates the absolute differences between the points, 

potentially offering a different perspective on data similarity and cluster formation. 

C. Comparative Analysis 

To determine the best clustering algorithm, a meticulous comparative analysis of the clustering 

methods previously presented was performed by examining the formed clusters of the original 

A4C median frame with the objective to reveal any patterns or associations that might be helpful 

for the left ventricle segmentation task. Both validation tools and visual representations of their 

structure were utilized in an attempt to have both mathematical and visual criteria. 

1. Silhouette Analysis 

Silhouette Analysis (scikit-learn, n.d.) was used to evaluate the quality of the clusters that 

provides a metric that quantifies the efficiency of the clustering results. The silhouette score, 

ranging from -1 to +1, offers a measure of how similar an observation is to its own cluster 

compared to other clusters by computing the mean inter-cluster distance and the mean intra-cluster 

distance, thus validating if the formed clusters are distinct and appropriate. The silhouette plots 

below display a measure of how tightly grouped the samples in the cluster are for each clustering 

algorithm. 
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Figure 32: Silhouette Plot Analysis for all four methods 

From the above graphs it is apparent that the k-means clustering algorithm produces a more 

accurate result since fewer data points have silhouette score < 1. To further prove the point the 

average silhouette score for each method was computed confirming the visual inspection. 

(KMeans: 0.31, Agglomerative: 0.28,  Bisecting K-means: 0.26, Bisecting K-means Manhattan: 

0.22) 

2. 2D and 3D Visualization 

The dataset was visualized using both 2D and 3D renderings of the principal components, allowing 

an insightful exploration of the created clusters within the data. The 2D visualizations display the 

basic groupings and separations, providing a straightforward view of the main patterns. On the 

other hand, the 3D visualization improves the process by allowing exploration of additional 

patterns and relationships among the clusters, since it provides a space view of how the data points 
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relate to each other. These visualizations served as a comprehensive tool in order to understand 

the underlying structures of the clusters within the data. 

    

 

Figure 33: Visualization of the Clusters in both 2D and 3D plots 
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From both the 2D and 3D visualizations it is evident that the k-means clustering created distinct, 

non-overlapping clusters. This means that the features used for clustering have enough variance 

between the groups to create clear boundaries when segmenting the dataset into clusters. 

3. Cluster Size Analysis 

An examination into the size and data density of each cluster was conducted as a preliminary 

approach to the following analysis through the clusters created by each method.  

 

Figure 34: Video Distribution in the clusters per method 

 

IV. Insights from the clusters 

With the clusters validated and visualized, the objective transitioned towards deriving meaningful 

insights from the clustered data while understanding the patterns between the data points in each 

cluster and the differences among the different clusters. Below there are samples and insights for 

each cluster. 
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Figure 35: First Cluster Sample 

The first cluster consists of echocardiographic data with a clear view of all the four cardiac 

chambers. 

 

 

Figure 36: Second Cluster Sample 

The second cluster has echocardiographic data that the left ventricle is vertically depicted. 
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Figure 37: Third Cluster Sample 

The third cluster consists of mainly noisy echocardiographic data. 

 

Figure 38: Fourth Cluster Sample 

The fourth and last cluster contains data that is focused in mostly the left ventricle while the other 

chambers are partially seen.  

 



56 

 

Conclusion - Left Ventricle segmentation via OpenCV 

Even though the k-means algorithm and the intricate journey through feature extraction, 

dimensionality reduction, cluster analysis and the meaningful partition into four clusters. Even 

though OpenCV provides a myriad of functionalities and initially seemed promising in refining 

processing for a particular frame, it failed dramatically to generalize across this diverse dataset.  

After multiple attempts to make the most of OpenCV and employing rather complicated techniques 

such as Hough Lines and Hough Ellipsis (scikit-image. n.d) the task of segmenting the Left 

Ventricle using traditional techniques was an unsuccessful journey that opened the path for 

researching alternative and more advanced methodologies. However, it was through OpeCV that 

this complex dataset was possible to visualize and get familiar with the complexities and intricacies 

of the echocardiographic data. 

Recognizing the limitations of the initial approach was crucial, especially when it comes to 

traditional methods like those offered by OpenCV. The journey led to exploring deep learning 

methodologies, which offer potential solutions to handle the complex and high-dimensional 

echocardiographic data that posed significant challenges to usage of OpenCV. This shift in 

methodology was not a change in direction, but rather a development exploring deep learning in 

more depth and continue the exploration into the echocardiographic data with a fresh perspective 

and a fine-tuned approach. 

Deep Learning Part 1 – Left Ventricle Segmentation 

In this part of the study, considering the difficulties that arose with traditional methods, the aim 

was to automate the segmentation of the left ventricle in the EchoNet-Pediatric dataset utilizing 

deep learning. The methodology involved a systematic approach starting from data pre-processing, 

model design, and training, through to model evaluation and application to new data. 

Preparing the Dataset 

The dataset for this part consists of the Apical 4-Chamber (A4C) view videos and their 

corresponding volume tracings stored in the VolumeTracings.csv file. Each tracing is essentially 

a set of coordinates that defines a polygon, which in turn represents the region of interest in a given 

frame of a video. 
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Extracting Polygons for Videos 

For each video, the goal was to extract a pair of polygons from which one depicts the left 

ventricular systole while the other the diastole. This is achieved by filtering the tracings data based 

on the filename of the video and subsequently grouping the data by frame number. For each frame, 

a polygon is then created using the coordinate values from the tracings data. This process resulted 

in a dictionary where each key is a frame number, and the corresponding value is the polygon (set 

of coordinates) for that frame. 

Generating Masks from Polygons 

Once we have the polygons for a video, the next step was to convert these polygons into binary 

masks. A mask is essentially a 2D array with dimensions matching the video frame, where pixels 

inside the polygon are set to 255 (white) and pixels outside the polygon are set to 0 (black). The 

mask is generated using the OpenCV library, which fills the area defined by the polygon 

coordinates and will serve as the ground truth during the model training phase.  

Extracting Frames and Corresponding Masks 

Each video in the dataset was read frame by frame using the OpenCV library. Each frame was 

converted to grayscale not only to reduce the computational load but also to emphasize the 

structural details in the echocardiographic frames, which are crucial for the segmentation task. 

Grayscale images retain the structural information while discarding the chromatic details. 

Continuing, for each frame for which we have a corresponding polygon in the tracings data, a mask 

is generated using the previously described method. These frames, along with their corresponding 

masks, are stored to be the input of the training model. It is important to note that the preprocessing 

procedure extracts and processes only those frames for which there is a corresponding polygon 

and frames without associated polygons are not used in the subsequent steps. 

Division of Data into Training and Test Subsets 

The dataset, consisting of frames and their corresponding masks, is divided into training and test 

subsets ensuring both subsets are representative of the overall distribution of data. Specifically, 

80% of the data is utilized for training the model, allowing it to learn the underlying patterns, while 



58 

 

the remaining 20% is reserved for testing, enabling an unbiased evaluation of the model's 

predictive performance on unseen data. 

U-Net Model Architecture 

The U-Net model, developed by Olaf Ronneberger et al. (2015) for biomedical image 

segmentation, employs a fully convolutional neural network structure renowned for its efficiency 

in tasks where the input and output dimensions are equal. The U-Net model used in this study 

starts with 32 filters and progressively doubles the number of filters in the encoding path 

(downward slope) until it reaches 512. Then, it symmetrically reduces the number of filters in the 

decoding path (upward slope) back to 32. 

 

Figure 39: Left Ventricle Segmentation U-Net Model 

 

Architecture Overview 

The U-Net architecture is symmetric and consists of two paths: 

Input: Two primary inputs – Initiating the downward slope 

The U-Net model takes two primary inputs: the original image frame and its corresponding mask. 

The mask in this context is a binary image that highlights the regions of interest – the left ventricle. 
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The combination of original images and masks enables the model to learn relevant features and 

ignore irrelevant areas. 

Encoder: Extracting Image Features 

Layer 1: The model starts with 32 filters. It applies two consecutive convolutional layers, each 

followed by a ReLU activation function, to capture the underlying patterns in the image, such as 

edges, textures, and more complex patterns. 

Layer 2 to 4: The number of filters doubles with each subsequent layer in the encoder (64, 128, 

256, and finally 512). The image's spatial dimensions reduce (due to max-pooling), but the feature 

dimensions increase, capturing more complex patterns while reducing computational complexity. 

Bottleneck: Most Compressed Information - Initiating the upward slope 

Layer 5: In the middle of the network (the bottom of the "U"), the spatial dimensions are smallest, 

and the feature dimensions are at their maximum (512). This layer focuses on encoding the most 

critical features of the input images. 

Decoder: Reconstructing and Segmenting the Image 

Layer 6 to 9: The decoder expands the feature information back into the original image size. It 

gradually increases the spatial dimensions and decreases the feature dimensions (from 512 back 

down to 32). During this phase, the model also leverages the feature information from the encoder 

using concatenation to ensure precise localization of the segmented areas. 

Final Layer: Creating the Segmented Output 

Layer 10: The final layer uses a 1x1 convolution to map the 32-channel feature maps to the desired 

output size. It outputs a single channel, representing the segmented areas of interest (the left 

ventricle) within each image. 

The implementation maintains the general U-Net structure, ensuring a symmetry between the 

encoder and decoder paths. The encoder is constructed using repeated applications of Conv2D and 

MaxPooling2D layers, while the decoder utilizes UpSampling2D layers to recover the spatial 

dimensions of the input. The final layer applies a 1x1 convolution to map the decoder's output to 

the desired segmentation mask. 
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Loss Function 

To train the U-Net model for segmentation, a combined loss function was utilized that 

encompasses: 

Dice coefficient 

A popular metric for evaluating the performance of image segmentation algorithms, the dice 

coefficient is a measure of how similar two objects are, in this case, the predicted segmentation 

and the ground truth (masks), by calculating the size of overlap. 

𝐷𝑖𝑐𝑒 𝐶𝑜𝑒𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑡 =
2 × |𝐴 ∩ 𝐵|

|𝐴| + |𝐵|
 

It is worth noting that the Dice score is not only a measure of how many positives you find, but it 

also penalizes for the false positives that the method finds, similar to precision, thus ensuring that 

the model is penalized for spatial inconsistencies. 

Dice Loss 

The Dice loss is computed as one minus the Dice coefficient, transforming the similarity metric 

into a loss function to minimize. 

𝐷𝑖𝑐𝑒 𝐿𝑜𝑠𝑠 = 1 − 𝐷𝑖𝑐𝑒 𝐶𝑜𝑒𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑡 

Binary Cross-Entropy (BCE) Loss: A standard loss for binary classification problems, penalizing 

pixel-wise classification errors. 

Compound Loss 

Taghanaki et al.  (Taghaniki et al.,2019) who researched multi-organ segmentation in medical 

imaging and addressed the issue of imbalanced data where the region of interest occupies a 

significantly smaller portion of the image compared to the background, especially in the context 

of this study at the systolic cardiac phase. They suggest that the combo loss function, that combines 

the Dice similarity coefficient with cross-entropy to penalize false positives and negatives 

performs exceptionally well at medical image segmentation.  
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Training Procedure 

The model was compiled and trained using the Adam optimizer, a widely used optimizer in deep 

learning applications due to its adaptive learning rate properties. This ensures that while the model 

learns to minimize the loss function, it adapts its updates to each parameter based on the historical 

gradients, thus enabling the model to learn more steadily and possibly faster. 

The model was trained using a batch size of 16 and for 10 epochs. During each epoch, the model 

processes batches of 16 images and their corresponding masks, updating its weights to minimize 

the loss on these batches across the training dataset. The validation data (X_test, y_test) are utilized 

to evaluate the model on unseen data during training, providing a snapshot of its performance and 

generalization capability. 

 

Figure 40: Training Process with loss and accuracy of U-Net model 

Model Training Results 

After training the model, the results from the final epoch yielded notable outcomes, which are 

indicative of the model's performance. Specifically: 

• Loss: 0.14 

• Accuracy: 0.98 

• Validation Loss: 0.16 

• Validation Accuracy: 0.98 
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Loss represents how well the model performed during training. A lower loss indicates better 

performance, with 0 being the ideal scenario. 

Accuracy is a measure of how well the model makes predictions. In this context, the accuracy is 

0.98, meaning the model correctly predicted the training data 98% of the time. 

Validation loss and accuracy are metrics that show how the model performs on new, unseen data. 

In this case, the model has a validation loss of 0.16 and validation accuracy of 0.98, suggesting 

that it is also performing well on the validation data. 

These results suggest that the model has learned to identify the patterns in the training data 

effectively and is also able to generalize its predictions to new, unseen data quite well. The high 

accuracy and relatively low loss in both training and validation phases indicate a well-fitted model. 

Below are some of the results compared to the initial image and the original mask as denoted by 

the experts: 

 

 

Figure 41: Examples of the Results of the Left Ventricle Segmentation Model compared to the original frame (left), 

the original mask (center left) the predicted mask (center right) and the final masked frame (right) 
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Figure 42: Examples of the Results of the Left Ventricle Segmentation Model compared to the original frame (left), 

the original mask (center left) the predicted mask (center right) and the final masked frame (right) 

Conclusion 

Through a thorough methodology surrounding by data preprocessing, model development, 

training, and evaluation while being in correlation with state-to-art studies regarding medical 

image segmentation, the study demonstrated a promising capacity for employing deep learning, 

specifically the U-Net model, in left ventricle segmentation in pediatric echocardiograms. 

Achieving an accuracy of 0.98 on both training and validation data, the model exhibited a profound 

ability to decipher patterns and generalize learning to unseen data. The visual results further 

support the numerical metrics, showcasing accurate segmentation in most cases.  

Deep Learning Part 2 – Prediction of Left Ventricle Ejection Fraction 

Introduction 

This study was born out of a clear but challenging goal: to predict the left ventricle ejection fraction 

using the EchoNet-Pediatric dataset. The journey toward this objective was far from 

straightforward, involving numerous trials and errors and diving deeply into the complex task of 

left ventricle segmentation by exploring various approaches and methodologies to achieve it. 

The quest to develop an automated segmentation solution through a deep learning approach was 

merely dependent on methodologies that have proven to be effective, however the prediction of 
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ejection fraction in pediatric echocardiographic video is not extensively explored due to the 

implications that come with the pediatric hearts and the lack of specific to this population dataset 

availability. 

Addressing the complexity of video data, which demands substantial computational resources, and 

training a model that processes an input of multiple frames, posed its own set of substantial 

challenges. 

This part of the study will walk you through not just the technical journey, but also the experiences 

and challenges encountered along the way. From the initial concept to the final solution, this is the 

journey: 

Preliminary Steps – The road to Ithaca  

In order to delve deeper into creating the ejection fraction model it was pivotal to determine the 

dataset to work on. The Apical 4-Chamber (A4C) view and their corresponding demographics, as 

well as the segmentation of the left ventricle model derived from using the Apical 4-Chamber 

(A4C) view along with the end systole and end diastole frames were utilized throughout this part 

of the study. 

Building Upon research derived from adult’s echocardiographic videos it was decided to use a 3D 

Two Stream Convolutional Network with input the first 16 frames of each video and their 

correlated Optical Flows which is the estimation of the motion of pixels between consecutive 

frames in a sequence of images. The below image depicts the result of the first try where the red 

line is the perfect fit line where all the data points should lie in the optimal scenario. 
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Figure 43: Predicted vs Actual EF (1st Attempt) 

  

This first attempt had proven unsuccessful with validation loss (in terms of mean square error) 

reaching 150 steering the goal to alternative solutions. 

The subsequent tactic was to integrate the demographics as an additional input to the model aiming 

to turn the data points towards the desired red line. 

 

Figure 44: Predicted vs Actual EF (2nd Attempt) 

Even though the preliminary analysis showed absence of apparent correlations between Ejection 

Fraction and demographic parameters such as age, weight, and height (the scatter matrix), this 

strategy provided some success, reducing the validation loss to 120, yet far ahead from the goal. 
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Integrating Left Ventricular Areas changes was the next addition, as an attempt to introduce the 

element of time into the model, which remarkably pushed the validation loss down to 90 and 

pushed the data points closer to the desired perfect fit line. 

 

Figure 45: Predicted vs Actual EF (3rd Attempt) 

Then hyperparameter tuning allowed the choice of appropriate hyperparameters that enabled 

reaching a validation loss down to 70. 

 

Figure 46: Predicted vs Actual EF (4th Attempt) 

It is worthy to note at this point that given the inherent human error in echocardiography, a 

benchmark validation loss of 25 as the goal to surpass or match. 

Subsequent explorations into data augmentation, such as video rotation, and incorporating masks 

and volume tracings into the model, regrettably, weakened the results. 
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Working and refining the above steps the journey towards crafting the optimal model gradually 

passed the most obstacles, such as Odysseus navigating through his mythical challenges, and the 

task at hand threw a bow to its final course for the destination. The methodology of the final model 

and its preprocessing tasks are delineated below. 

Further preparing the final Dataset 

When beginning this project, the first major task was figuring out the best way to prepare the 

dataset. The initial idea was to simply use the first 16 frames from each video. However, 

considering the goal was to predict the ejection fraction – a measure that is specifically concerned 

with the change in the heart left ventricles volume between beats – it became clear that using just 

any frames wouldn't work. Instead, it was crucial to select specific frames that captured the left 

ventricle from the end-diastole to the subsequent end-systole.  

This decision was made while trying to identify a way to calculate the ejection fraction using a 

function that can be used dynamically to each video. Thus, on the one hand the 16 frames of the 

cardiac cycle would be available and on the other a feature that is supposed to be near the ejection 

fraction. The foundational belief was that embedding these meticulously extracted and computed 

features along with the preliminary approaches would successfully pave the way towards a model 

capable of discriminating the patterns in the data, thus making accurate predictions of ejection 

fractions. 

There exist multiple methods of calculating the left ventricle ejection fraction widely adopted by 

medical professionals around the globe. Two of the most significant methods are the Simpson’s 

Method and the Quinones (Teichholz) Method. Here's a more in-depth look at both: 

1. Simpson's Method 

It is based on the geometric assumption that the left ventricle can be approximated as a series of 

cylindrical disks along its long axis. The areas of these disks are summed to calculate the volume. 

Here is the general formula to calculate ventricular volume using Simpson's Method: 

𝑉 =
𝐴𝑟𝑒𝑎1 + 𝐴𝑟𝑒𝑎2 + ⋯ + 𝐴𝑟𝑒𝑎𝑛

𝐴𝑟𝑒𝑎𝑛
× 𝐿 

Where 𝑉is the volume, 𝐴𝑟𝑒𝑎𝑖 are the areas of the disks, and 𝐿 is the length of the ventricle. 
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2. Quinones Method (Teichholz Formula) 

It is based on a geometric model that approximates the left ventricle as a prolate ellipse of 

revolution. 

Here is the formula to calculate ventricular volume: 

𝑉 =  7.0 ×
𝐷3

2,4 + 𝐷
 

Where 𝐷 is the internal diameter of the ventricle at end-diastole or end-systole. 

No matter which of the above method used to calculate the cardiac volume, the ejection fraction 

is compute by the formula: 

𝐸𝐹 =  
(𝐸𝐷𝑉 −  𝐸𝑆𝑉)

𝐸𝐷𝑉
 ×  100 

Where EDV is the end diastolic volume, and ESV is the end systolic volume. 

While the Simpson's method has a wider acceptance in echocardiographic machines due to its 

precision, its practical application solely on videos presents great difficulties. This limitation 

enabled the decision to use the Quinones method, which offers a more feasible avenue for video-

based calculations. 

This rather complicated preprocessing task was handled as a separate step due to its demand for 

computational resources resulting in creating a h5py dataset (h5py, n.d.) to be handled in the 

training model algorithm. 

Step 1: Filtering Outliers 

The meticulous observation showed that the left ventricle segmentation included frames that were 

not accurate enough. Before any further processing, it was crucial to ensure the reliability of the 

data being used. Outliers, which are extreme points, can skew the results and lead to untrustworthy 

predictions. In the case of this study, the outliers refer to masks that deviate significantly from the 

median mask of a given dataset. By calculating the Mean Squared Error (MSE) between each mask 

and the median mask, those that were outside a determined threshold (defined as three times the 
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standard deviation above the mean MSE) were excluded. This step ensured that only the most 

representative and consistent masks are used for further analysis. 

Step 2: Visualizing Cardiac Cycles - Analysis of Local Maxima and Minima 

One of the standout features of the preprocessing was the visualization of the cardiac cycles. By 

plotting the smoothed areas of the heart, it provided a clear graphical representation of the cardiac 

activity over time. These visualizations helped in identifying the peaks (local maxima) and valleys 

(local minima) in the data, representing the end-diastole and end-systole, respectively. 

Cardiac cycles, in essence, consist of the heart contracting and relaxing. In the context of the data, 

these events are represented as the local maxima (diastole) and local minima (systole) on the 

smoothed area plot (red and green respectively). Through advanced conditional checks, the code 

identifies these critical points. For instance, if the first frame has a higher smoothed area than the 

first detected local maxima, it is added as a local maxima to consider the potential of capturing the 

entire cardiac cycle. 

Below there is a representative visualization sample of this approach. The end-diastole is denoted 

as purple, corresponds to the biggest area and was the chosen first frame for the subsequent 

analysis and the following systole denoted as yellow was chosen as the end-systole, thus the last 

frame. 

 

Figure 47: Cardiac cycles sample based on the area of the left ventricle, performing local optimization while 

depicting the chosen end diastole and end systole. 
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Figure 48: Cardiac cycles samples based on the area of the left ventricle, performing local optimization while 

depicting the chosen end diastole and end systole. 
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Figure 49: Cardiac cycles samples based on the area of the left ventricle, performing local optimization while 

depicting the chosen end diastole and end systole. 

The title was highlighted to visually display the absolute difference between the Actual EF as 

calculated by the experts and the calculated Quinones EF.  

Step 3: Computing the Quinones EF 

One more notable aspect of this research is the computation of the Quinones Ejection Fraction 

(EF), a formula derived from ventricular dimensions. After identifying the end-diastole and end-

systole frames, the areas under these points are used to compute the LVIDs (Linear Dimension at 

systole) and LVIDd (Linear Dimension at diastole). Those linear dimension calculations assume 

that these areas can fit roughly in a circular shape thus able to compute its diameter. These 

dimensions are then used in the Quinones formula to estimate the EF, providing an approach to 

determining the ejection fraction without direct measurement. This approach is commonly used in 

echocardiography to estimate linear dimensions from area measurements, especially when a more 

precise geometric model of the left ventricle cannot be easily derived from the available data. The 

computed EF then was incorporated into the demographics dataset. 

Step 4: Adjusting Frame Numbers: 

After calculating the number of frames between end diastole and end systole there were variations, 

as expected by the preliminary analysis. It was imperative for the model input that each video is 

represented by a consistent number of 16 frames. This step involved either interpolation (for videos 

with fewer frames) or taking the median (for videos with more frames) to ensure each video data 

is standardized to 16 frames.  
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Step 5: Introduce intensity variations. 

Intensity variations across the cardiac cycle in the echocardiographic images were incorporated 

since the variations in pixel intensity may correlate with the movement and changes in the heart 

throughout the cycle that might hint pathological conditions of the left ventricle, thus affecting the 

Ejection Fraction (EF). 

Step 6: Integration of Left Ventricle Area Changes 

The alteration in the LV area throughout the cardiac cycle is a direct reflection of the heart's ability 

to pump blood effectively. The difference in the LV area during the entire cardiac cycle could give 

a representation of the heart’s activity throughout different phases, which is linked to the Ejection 

Fraction (EF). 

Step 7: Data Augmentation on the Minority Class (EF<50) and Noise Addition 

In the initial preprocessing analysis of this thesis, it was profound that the distribution of the not 

normal Ejection Fraction (EF) was significantly less than the one of the normal. Thus, paved the 

way to introduce data augmentation to the data where the Ejection Fraction (EF) was less than 50. 

The minority class data underwent rotations of 7 and 14 degrees to create new synthetic samples. 

In addition, Gaussian noise was added to these rotated images to introduce further variance and 

ensure a solid approach potentially enhancing the model's ability to generalize. 
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Figure 50: A sample of the original and noised rotated frames. 

Tripling Minority Class Data: For non-image data (demographic data, lv_area_changes, and 

intensity_variations), the minority class samples were tripled to bring their shape on par with the 

shape of the image data. This was a useful strategy in dealing with class imbalance. 

Step 8: Compiling the Final Dataset: 

After all the meticulous steps of data preparation, from outlier filtering to the computation of the 

Quinones EF, the final dataset is compiled. This dataset, which consists of adjusted frames, their 

corresponding masks, demographic data, calculated ejection fractions, intensity variations, left 

ventricular area changes and the actual ejection fractions were now ready to be incorporated in the 

model, transforming it into a Multi Input. 

Step 9: Data Normalization 

The normalization of the data was an essential step to prepare the dataset for modeling. Data 

normalization was performed to scale the demographic numerical data apart from the Quinones 

Ejection Fraction (EF), ensuring that each parameter has a similar data distribution. This is 

particularly important for models that use gradient descent as an optimization strategy, as it helps 

to ensure that all features are treated equally when training the model, apart from the calculated 

Quinones Ejection Fraction (EF) that was deliberately left out to dominate this dataset.  
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Step 10: Satisfying the Training and Test Sets 

Attempting to implement data stratification for the training and test sets, the data were divided into 

three age categories: 0-5, 6-12, and 13-18 years. Within each age group, Ejection Fractions (EFs) 

were classified as either normal or not normal based on whether they were above or below 50. The 

proportion of EFs less than 50% was calculated for each age category to understand their 

distribution. Using these proportions, a selection of samples was made from each age group to 

assemble a representative test set, maintaining the original EF distribution. The remaining data 

formed the training set, ensuring both sets were reflective of the overall data characteristics. 

 

Figure 51: Proportion of normal and not normal EF of  the three sub-datasets 
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Figure 52: Proportion of normal and not normal EF per age group per sub-dataset 

Model Architecture 

The model, once a two stream, was transformed to a multi-stream architecture strategically 

designed to process different types of inputs in parallel using TensorFlow and Keras before 

merging them for the final predictive step.  

The first stream processes the grayscale video frames (spatial stream) derived from the 

segmentation model using 3D convolutional layers, while the second stream addresses the optical 

flow between frames (temporal stream) also via 3D convolutional layers. Both streams utilize 

MaxPooling and BatchNormalization to manage the computational complexity and enhance the 

training stability.  
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Figure 53: A sample of the 16 input frames from End Diastole to End Systole allong with their Optical Flow 

In addition, three separate input streams for demographic data, left ventricle (LV) area changes, 

and intensity variations are integrated, each processed through a dense layer with 'ReLu' activation 

followed by Batch Normalization and Dropout for regularization.  

The outputs of all these independent streams are concatenated merging their insights into a fully 

connected dense layer with 'ReLu' activation, finally passing through dropout and a final dense 

layer to produce the final continuous output, predicting the Ejection Fraction (EF). 

The following plot illustrates the architecture of the final model, showcasing the multiple inputs 

and how the five inputs contribute to the prediction. 
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Figure 54: Final Multi Input Model Visualization 

  

Activation function 

The activation function ReLu (towardsdatascience.com, n.d.), even though it looks like a linear 

function, introduces non-linearity to the model that allows it to solve complex problems and 

understand intricate patterns. 

Loss Function 

The Mean Squared Error (MSE) (Science Direct, n.d.) was selected as the loss function for 

training the model. Given the model’s task of predicting a continuous variable (the Ejection 

Fraction), the MSE calculates the average of the squares of the errors between the predicted and 

actual EF values. This choice is typical for regression problems, as it effectively penalizes larger 

errors in prediction and is differentiable, which is beneficial during backpropagation. 
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Optimization Strategy 

The optimization of the model parameters was performed using the Adam optimizer with a 

learning rate of 0.00001. Adam (keras, n.d.), a widely-used optimization algorithm, computes 

adaptive learning rates for each parameter by leveraging the moving averages of the parameters. 

This choice provides efficient, low-computational-cost optimization while also being suitable for 

problems with noisy or sparse gradients, which is often the case in deep learning. 

Training Procedure 

The training phase was performed over 20 epochs with a batch size of 16, utilizing several 

callbacks to enhance the training process. Early Stopping was employed to monitor the validation 

loss, which stopped training if no improvement was observed for five consecutive epochs while 

reverting the model weights back to those of the best-performing epoch. Model Checkpointing 

saved the model weights at the epoch with the lowest validation loss, ensuring that the best-

performing model was retained for further tasks. Additionally, the Reduce Learning Rate on 

Plateau strategy was used, reducing the learning rate when the validation loss ceased to improve, 

providing the model with finer control as it approached a minimum. These strategies aimed to 

safeguard the model against overfitting and assist the training process by guiding it through the 

different possibilities. 

Below there is a representation of some epochs of the training process showcasing these strategies. 

Epoch 1/20 

195/195 [==============================] - ETA: 0s - loss: 192.3020  

Epoch 1: val_loss improved from inf to 632.82275, saving model to best_model_weights.h5 

195/195 [==============================] - 2210s 11s/step - loss: 192.3020 - val_loss: 632.8228 - lr: 1.0000e-05 

Epoch 2/20 

195/195 [==============================] - ETA: 0s - loss: 96.7948  

Epoch 2: val_loss improved from 632.82275 to 117.63184, saving model to best_model_weights.h5 

195/195 [==============================] - 2202s 11s/step - loss: 96.7948 - val_loss: 117.6318 - lr: 1.0000e-05 

… 

Epoch 4/20 

195/195 [==============================] - ETA: 0s - loss: 69.6917  
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Epoch 4: val_loss did not improve from 76.50826 

195/195 [==============================] - 2195s 11s/step - loss: 69.6917 - val_loss: 89.6854 - lr: 1.0000e-05 

.. 

Epoch 9/20 

195/195 [==============================] - ETA: 0s - loss: 54.0595  

Epoch 9: val_loss did not improve from 56.05175 

Epoch 9: ReduceLROnPlateau reducing learning rate to 1.9999999494757505e-06. 

195/195 [==============================] - 2198s 11s/step - loss: 54.0595 - val_loss: 90.8225 - lr: 1.0000e-05 

… 

Epoch 11: val_loss did not improve from 56.05175 

195/195 [==============================] - 2198s 11s/step - loss: 42.0400 - val_loss: 56.1998 - lr: 2.0000e-06 

Epoch 11: early stopping 

 

The following plot depicts the Training and Validation Loss across all the epochs: 

 

Figure 55: Train and Validation Loss per epoch plot 

Model Training Results 

The model which contained augmented data returned the following results: 

• Mean Absolute Error (MAE): 5.36 
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• Mean Squared Error (MSE): 47.55 

• Root Mean Squared Error (RMSE): 6.89 

• R-squared (R^2): 0.77 

The plot below shows that the data points as well as the trend line in green (first polynomial) lie 

very close to the perfect fit line compared to the initial attempts. 

 

Figure 56: Actual vs Predicted EF Plot of the Final Model 

Residual Analysis 

Of equal importance was the residuals analysis. Residuals represent the difference between the 

actual values and the values predicted by the model. For a given data point, the residual is 

calculated as: 

𝑅𝑒𝑠𝑖𝑑𝑢𝑎𝑙 =  𝐴𝑐𝑡𝑢𝑎𝑙 𝑉𝑎𝑙𝑢𝑒 −  𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑 𝑉𝑎𝑙𝑢𝑒 

In the context of a regression model, residuals help understanding how far off the predictions are 

from the actual values. If a model fits the data perfectly, the residuals would be zero for all data 

points. 
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In regression analysis, one of the key assumptions is that the residuals (or errors) are normally 

distributed. If this assumption proves true, it means that the model is well specified and that the 

error in the regression model does not have any patterns that the model is not capturing. In simpler 

terms, it indicates that the model is making errors that are random and not systematic. 

 

Figure 57: Distribution of Residuals of the Final Predicted values for residual analysis 

The residuals, as can be seen in the above graph, are normally distributed and centered around 

zero. This shows that there was no obvious bias in the model predictions. If the residuals were 

skewed to the left or right, it would have indicated that the model consistently overpredicts or 

underpredicts the target variable. The bell shape indicates that most of the model's predictions are 

close to the actual values, with fewer predictions deviating significantly. 
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Chapter 4 

Results 

Introduction 

In the pursuit of knowledge, presenting the research results serves as a defining moment. These 

findings not only validate the methods employed but also set the stage for conclusions and future 

work. The primary goal of this study was to predict the Left Ventricle Ejection Fraction (EF) with 

a high degree of accuracy. This chapter presents the quantitative outcomes derived from the final 

multi-input regression model trained on the EchoNet-Pediatric dataset and compares the results 

with those of recent related studies. 

Quantitative Analysis 

Final Results 

After time intensive training, the model was saved as "h5.py" and tested on the initial dataset. The 

results were not only remarkable but also surpassed our goal. The model achieved the following 

metrics: 

● Mean Absolute Error (MAE): 2.69 

● Mean Squared Error (MSE): 15.96 

● Root Mean Squared Error (RMSE): 3.99 

● R-squared (𝑅2): 0.84 

These metrics provide a complete understanding of the model's performance. A MAE of 2.69 

indicates that the model's predictions are, on average, approximately 2.69 units away from the true 

values, which is significantly less than the human error. 
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The MSE and RMSE, on the other hand, penalize larger errors more than smaller ones, making 

them especially useful when large errors are particularly undesirable. An RMSE of 3.99 suggests 

that the model's predictions differ on average from the actual values by roughly 3.99 which again 

is significantly less than the human error. 

Lastly, the 𝑅2 value shows how much of the variation in Ejection Fraction the model can explain 

using the given data as a proportion. The 𝑅2 value of 0.84 suggests that 84% of the variability in 

the Ejection Fraction can be explained by the model, which is an impressive achievement for a 

regression task. 

Visualization and Interpretation 

The three following plots provide a visual representation of the relationship between the actual 

and predicted Ejection Fraction (EF) values for the training set, the test set, and the entire dataset. 

The line of perfect fit, depicted in red, represents the ideal scenario where every prediction matches 

the actual value. The first-degree and second-degree polynomial trend lines, shown in green and 

yellow respectively, indicate the general direction and bend of the data points.  

The orange and light green dashed lines create four quadrants, where data points that fall between 

different colors indicate instances where the EF was not accurately classified as either normal or 

abnormal. 
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Figure 58: Actual vs Predicted EF of the Final Model for the train, test and complete datasets. 

Residual Distribution 

The residual distribution plot displays that residuals are normally distributed around zero, 

showcasing no bias in the model's predictions. The bell shape suggests most predictions are close 

to the actual values. What is more, there is a narrower spread across the range compared to the 

augmented data, that indicates the model’s consistent prediction capabilities. 

 

Figure 59: Residual Distribution Analysis on the original dataset. 
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Comparative Analysis 

In evaluating the performance of the model, it's essential to compare its outcomes with existing 

methodologies. The results are compared with two notable studies in the domain of video-based 

deep learning models for predicting Ejection Fraction (EF) both conducted in Stanford University. 

  

Video-Based Deep Learning Model for Automated Assessment of Ejection Fraction in Pediatric 

Patients. (Reddy et al., 2022) 

Dataset: Same as this study - EchoNet-Pediatric. 

Key Results: 

● The model predicted an 𝑅2 of 0.73 for the A4C view and 0.74 

for the PSAX view. When combined, the overall R^2 was 

0.78. 

● Mean Absolute Error (MAE) for EF estimation was 3.66%. 

The model in this study, with an 𝑅2 of 0.84, demonstrates superior performance in predicting EF 

compared to the EchoNet-Peds model. Additionally, the MAE of 2.69% is lower, indicating better 

precision in predictions. 

  

Video-based AI for beat-to-beat assessment of cardiac function (Ouyang et al., 2020). 

Dataset: A large dataset of 10,030 annotated echocardiogram videos. 

Key Results: 

● Mean Absolute Error (MAE): 4.1% 

● Root Mean Squared Error (RMSE): 5.3% 

● 𝑅2: 0.81 

Figure 60: EchoNet-Pediatric 

Results (©Reddy et al., 2022) 

Figure 61: EchoNet-Dynamic 

Results (©Ouyang et al., 2020) 
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Compared to EchoNet-Dynamic, the model in this study exhibits a slightly better 𝑅2 value but 

with a notably reduced MAE and RMSE. 

The table below summarizes the comparison of the three studies: 

 

This Study 

EchoNet-Pediatric 

(Reddy et al., 2022) 

EchoNet-Dynamic 

(Ouyang et al., 2020) 

Dataset EchoNet-Pediatric EchoNet-Pediatric 10,030 annotated 

echocardiogram 

videos 

MAE 2.69 3.66 4.1 

RMSE 3.96 - 5.3 

R2 0.86 0.73 (A4C view), 

0.74 (PSAX view), 

0.78 (combined) 

0.81 

Table 1: Comparison of this study to Stanford's EchoNet studies 

In conclusion, the model exhibits performance superior to EchoNet-Pediatric and competitive to 

EchoNet-Dynamic in predicting the Left Ventricle Ejection Fraction (LVEF) when benchmarked 

against contemporary research. 
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Chapter 5 

Discussion  

Computer Vision and Deep Learning have been steadily reshaping the medical imaging 

diagnostics field, including echocardiography, with breakthroughs that have the potential to alter 

these subfields while offering new crossroads where traditional medicine expertise meets rapidly 

evolving cutting-edge technologies. 

Interpretation of Results 

The results from this study emphasize the potential of incorporating Artificial Intelligence (AI), 

particularly in the domain of pediatric echocardiography. 

The accuracy and efficiency of the two deep learning models developed, one for automated left 

ventricular segmentation and one for automated ejection fraction prediction not only validate the 

capabilities of joining the forces of Computer Vision and Deep learning on pediatric 

echocardiographic videos but also could contribute to the ongoing evolution of pediatric 

echocardiography. 

Furthermore, addressing the limitations of pediatric echocardiography presented in this study and 

its significant role in diagnosing and treating congenital and acquired cardiovascular diseases in 

children compared to other imaging techniques such as MRI and CT, the results of the study show 

that integrating computer vision and deep learning to echocardiography can help minimize the 

challenges posed by inter-observer variability as well as minimize the dependence on specialized 

experts. In addition, a great advantage is the minimum data requirement. Only a cardiac cycle is 

needed, which in children lasts less than a second, and this can be beneficial for data acquisition, 

minimizing the time needed to take a sample video, addressing the patient movement especially 

for children in early ages. 
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The outcomes of this research, as presented in the results sections, offer valuable insights 

supporting these hypotheses, highlighting the potential of AI-driven solutions that offer a 

promising path forward, ensuring that pediatric patients receive the most accurate and 

comprehensive care possible. 

Limitations and Challenges 

Undertaking this research was a journey not without its challenges. Starting from the Data 

Acquisition, researching the intricacies of employing cutting edge technologies in 

echocardiographic, but not limited to, imaging, dealing with a dataset of the delegate population 

of children, trying to exceed the results of research conducted by interdisciplinary teams and the 

relation with the author’s heart struggles this journey was far from technical but deeply linked with 

emotions, passion, and personal experiences. 

The primary objective was to utilize a dataset not widely explored, aiming to create an original 

thesis that had the potential to incorporate a variety of the material covered during the Master’s in 

Data Science program. Given the fact that Data Science is at the forefront in today’s world this 

was not an easy task. Initial efforts to acquire a health-related tumor centric dataset from another 

Institution were not fruitful. However, after extensive research a dataset was identified that had a 

lot of potential that enabled the opportunity to incorporate a variety of the program’s curriculum. 

On the technical front, the complexity of deep learning requires a relatively big dataset, and the 

quality of predictions depends on the quality and diversity of the training set. Although the dataset 

was robust, and the biggest pediatric dataset as of today, one could argue that more varied data 

would have further enhanced the model's accuracy, especially concerning data points with a 

labeled Ejection Fraction less than 50%. However, the dataset showed multiple complexities not 

only purely because of the high dimensionality that comes with video data, their variety in length 

and number of frames, the fact that video and image data are not perceived by computers as by the 

human brain, the two views and their four relative xml files but also because of the inherent noise 

that comes with medical imaging. 

This noise, along with the constant movement of the myocardium during the cardiac cycle, the 

overlapping cardiac structures due to multiple views in different videos, the varying image quality, 
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and at times, additional visuals added to the videos by the sonograms, made it impossible for 

traditional machine vision techniques with OpenCV to effectively segment the left ventricle. Even 

though OpenCV has proven effective in various applications and offers a plethora of tools, 

countless hours spent trying multiple methods and mixed methodologies returned insufficient 

results. Specifically, beyond the typical functionalities and morphological operations, methods 

such as background subtraction, Hough lines and Hough ellipsoids, trend lines based on pixel 

intensity, patterning the sonographic angle, and several others demonstrated that this task was 

exceptionally challenging to address. 

As for the machine learning part, due to the unique nature of echocardiographic images, multiple 

pretrained feature extraction methodologies such as VGG: Developed by the Visual Geometry 

Group at Oxford (Simonyan & Zisserman, 2014) and ResNet (Residual Networks): Introduced 

by Microsoft Research (He et al., 2016) were ineffective, necessitating further research for finding 

methodologies to extract meaningful features for the machine learning (ML) algorithms. In 

addition, it is important to note there are not available libraries in python that offer a bisecting K-

means clustering algorithm. This gap required the development of a custom solution. 

Moreover, while both deep learning models performed admirably, they have the potential for 

occasional errors. It is important to acknowledge that no model, no matter how sophisticated, can 

guarantee absolute accuracy. This emphasizes the need for a thorough validation process before 

integrating such models into the echocardiographic ultrasound machines. In addition, it is 

important to add that other approaches like Time Distributed Two Stream Convolutional Networks 

(CNNs),  2-Dimensional (2D) Spatial Temporal Convolutional Networks (CNNs) and simpler 

approached were tried put none proven sufficient enough to produce effective results. 

Finally, this research “was close to the heart” of the researcher due to personal struggles with 

myocarditis. Revisiting the intricacies of the cardiac functionalities and recalling numerous 

imagine tests through the healing process brought back strong memories and emotions. These 

feelings strengthened the determination to produce significant results. 
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Future Work 

This study highlights the great opportunities presented by integrating machine learning into 

pediatric echocardiography. Looking ahead, despite the admirable results, there are several key 

areas emerging that if addressed, could on the one hand produce even better results and on the 

other could make it the beginning of new endeavors. 

A natural progression following the development of the robust models, is to make their insights 

more accessible and interpretable to end-users via the Graphical User Interface. 

The human heart is a complicated organ with intricate structural and dynamic functionalities. It is 

best understood from multiple perspectives, at least for humans. Thus, this could be the case with 

adding the Parasternal Short Axis (PSAX) view in the model while incorporating the whole 

dataset. However, the scope of this thesis was to explore predicting the Ejection Fraction, solely 

on the left ventricle Apical 4-Chamber (A4C) view, since Auto EF functionality in the existing 

ultrasounds is based on this view. 

The intersection of medical and data science offers great opportunities. Yet, to reach its full 

potential, multidisciplinary cooperation is essential. Institutions and researchers from different 

fields should unite embracing the nuances of artificial intelligence not with skepticism but with an 

open mind set. This will not just benefit the healthcare systems, but most importantly patients 

worldwide. This is the case with this thesis as well. A next step could be partnering with a health 

institution, either a medical school or a pediatric cardiac research center and representatives from 

ultrasound equipment manufacturers. Such collaboration will ensure that the developed models 

are not just technically robust, but also medically reliable and feasible to be integrated into 

ultrasound systems, leading to clinical trials. 

The efficiency of a data-driven approach is often related to the extension of its underlying dataset. 

Future efforts to expand the current dataset, incorporating echocardiographic videos from a diverse 

range of patients, different age groups, health conditions, geographical backgrounds and 

manufacturers can enhance the model's generalizability, making it a complete model for any 

equipment and patient. 
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Medical science and Data Science by their very nature are evolving constantly, and as more data 

becomes available it is crucial for models and methodologies to adapt accordingly. Thus, periodic 

reviews, refinements, retraining, and updates are of great importance to future work, ensuring this 

research remains current and aligned with the latest advancements in both fields.  
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Chapter 6 

Conclusion 

The field of cardiac diagnostics has witnessed a remarkable transformation, especially in recent 

years. With the advent of advanced medical technologies and the rapid evolution of Data Science, 

new horizons have opened that offer innovative approaches. At the heart of this study lies the 

admirable human heart as portrayed by the EchoNet-Pediatric Dataset, an expert annotated, 

videographic and demographic dataset from children between 0 and 18 years of age who had 

undergone echocardiography. 

Guided by literature from various subjects and material taught in the Master's program in Data 

Science at the American College of Greece, this thesis embarked on a journey that mirrors the 

program’s structure. From data analysis and data visualization methodologies to machine learning, 

from computer vision to deep learning models, it illustrates the inference of new knowledge with 

the potential to change the world as we know it. 

The fusion of data science and echocardiography, as explored in this study, indicates a new era in 

pediatric echocardiography. While the results are promising, it's imperative to approach the 

adoption of such technologies with caution, ensuring that they undergo extensive clinical testing. 

Every research process, no matter how comprehensive, has its struggles and limitations. 

Nevertheless, the accomplishments of this research were evidenced by the results and showcase 

the potential of incorporating computer vision and deep learning in echocardiography, not only for 

left ventricle segmentation and prediction of ejection fraction but in general. 

On a personal note, the ultimate goal was to explore whether it is possible to provide better, faster, 

and more consistent diagnostic insights, ensuring that the young patients receive the best care 

possible. 
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The study's essence lied in the transition from pixels, the smallest units of digital imaging, to 

invaluable clinical insight that can shape the future. 
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Appendices 

Appendix A 

STANFORD UNIVERSITY SCHOOL OF MEDICINE ECHONET-PEDIATRIC DATASET 

RESEARCH USE AGREEMENT 

By registering for downloads from the EchoNet-Pediatric Dataset, you are agreeing to this 

Research Use Agreement, as well as to the Terms of Use of the Stanford University School of 

Medicine website as posted and updated periodically at http://www.stanford.edu/site/terms/. 

 

1. Permission is granted to view and use the EchoNet-Pediatric Dataset without charge for 

personal, non-commercial research purposes only. Any commercial use, sale, or other 

monetization is prohibited. 

 

2. Other than the rights granted herein, the Stanford University School of Medicine (“School of 

Medicine”) retains all rights, title, and interest in the EchoNet-Pediatric Dataset. 

 

3. You may make a verbatim copy of the EchoNet-Pediatric Dataset for personal, non-commercial 

research use as permitted in this Research Use Agreement. If another user within your organization 

wishes to use the EchoNet-Pediatric Dataset, they must register as an individual user and comply 

with all the terms of this Research Use Agreement. 

 

4. YOU MAY NOT DISTRIBUTE, PUBLISH, OR REPRODUCE A COPY of any portion or all 

of the EchoNet-Pediatric Dataset to others without specific prior written permission from the 

School of Medicine. 
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5. YOU MAY NOT SHARE THE DOWNLOAD LINK to the EchoNet-Pediatric dataset to others. 

If another user within your organization wishes to use the EchoNet-Pediatric Dataset, they must 

register as an individual user and comply with all the terms of this Research Use Agreement. 

 

6. You must not modify, reverse engineer, decompile, or create derivative works from the 

EchoNet-Pediatric Dataset. You must not remove or alter any copyright or other proprietary 

notices in the EchoNet-Pediatric Dataset. 

 

7. The EchoNet-Pediatric Dataset has not been reviewed or approved by the Food and Drug 

Administration, and is for non-clinical, Research Use Only. In no event shall data or images 

generated through the use of the EchoNet-Pediatric Dataset be used or relied upon in the diagnosis 

or provision of patient care. 

 

8. THE ECHONET-PEDIATRIC DATASET IS PROVIDED "AS IS," AND STANFORD 

UNIVERSITY AND ITS COLLABORATORS DO NOT MAKE ANY WARRANTY, EXPRESS 

OR IMPLIED, INCLUDING BUT NOT LIMITED TO WARRANTIES OF 

MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE, NOR DO THEY 

ASSUME ANY LIABILITY OR RESPONSIBILITY FOR THE USE OF THIS ECHONET-

PEDIATRIC DATASET. 

 

9. You will not make any attempt to re-identify any of the individual data subjects. Re-

identification of individuals is strictly prohibited. Any re-identification of any individual data 

subject shall be immediately reported to the School of Medicine. 

 

10. Any violation of this Research Use Agreement or other impermissible use shall be grounds for 

immediate termination of use of this EchoNet-Pediatric Dataset. In the event that the School of 

Medicine determines that the recipient has violated this Research Use Agreement or other 

impermissible use has been made, the School of Medicine may direct that the undersigned data 

recipient immediately return all copies of the EchoNet-Pediatric Dataset and retain no copies 

thereof even if you did not cause the violation or impermissible use. 
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In consideration for your agreement to the terms and conditions contained here, Stanford grants 

you permission to view and use the EchoNet-Pediatric Dataset for personal, non-commercial 

research. You may not otherwise copy, reproduce, retransmit, distribute, publish, commercially 

exploit or otherwise transfer any material. 

 

Limitation of Use 

You may use EchoNet-Pediatric Dataset for legal purposes only. 

 

You agree to indemnify and hold Stanford harmless from any claims, losses or damages, including 

legal fees, arising out of or resulting from your use of the EchoNet-Pediatric Dataset or your 

violation or role in violation of these Terms. You agree to fully cooperate in Stanford’s defense 

against any such claims. These Terms shall be governed by and interpreted in accordance with the 

laws of California. 

Appendix B 

Sample of FileList.csv 

 
Sample of VolumeTracings.csv 
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Appendix C 

Sample of statistics excel file: 

 

Appendix D 

Sample of the extracted featurs excel file: 

 


