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2 Abstract

Current consumption habits are enabled due to the various commercial ports around the world.
Goods are transported and traded only due to the existence of ports since the ancient days.
However, any port disruptions jeopardize the ordinary consumption patterns. A well know
suspect of port operations is climate change. Climate change shifts weather patterns causing
more severe and more frequent weather events very often responsible for disturbance of port
operations and marine roots. In this context, we investigate how Deep Learning Neural Net-
works (DLNN), in contrast to the traditional Numerical Weather Prediction (NWP) processes,
could offer more accurate weather predictions in port regions preventing major economic losses.
This Thesis presents the relative state-of-the-art literature on deep learning weather prediction
and constructs 5 days forecasts for the ten biggest US commercial ports for 2023.
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3 Introduction

Production intensification especially after the early 20th century, has been a critical factor for
climate change. On this basis, production intensification increases exponentially greenhouse
gas emissions (GHG) which by extension trap heat in the atmosphere of earth. Thus, global
average temperature tends to increase more than the anticipated annual increase the last 100
years, causing changes to the climate that living beings were adapted to all those previous years.
Indeed, climate in earth according to climatologists and paleoclimatologists, has been through
many changes from desert climate to arctic climate, while beyond doubt climate constituting
a space (geographical) related phenomenon. The disturbance factor that enters the usual
climate earth cycle from warmer climate to colder climate and vice versa is that given the
excessive GHG emissions, the anticipated climate change is accelerated leading to faster species
extinctions and extreme weather patterns in only a few years, named as anthropogenic climate
change. Focusing on the extreme weather events, many human economic activities already face
severe disruptions, since the plan under which they were formed supposed a milder climate with
less unexpected weather incidents. Port management and operations along with port supply
chain, constitutes a human economic activity that is profoundly affected by extreme weather
events. Given this background, a great volume of research effort continuously evolves towards
the understanding of weather patterns and weather incident prediction to achieve better port
operation adaptation and more efficient shipment scheduling, limiting extensive economic losses
due to weather-related delays, and weather-related operational shutdowns in ports. Given this
framework, the Thesis structure is as follows. Section 2.1, presents the concept of climate
change, discussing anthropogenic and natural causes. It further investigates literature that
links natural disasters and extreme weather events to shifting climate. Section 2.2, extends
the intensification impact of extreme weather events due to changing climate, and explores
their effect on ports. Moreover, this section inspects within literature the economic impact
of port damages and disruptions caused by extreme weather events and possible adaptation
measures that could increase port resilience to the reality of changing climate. Section 2.3,
presents at first the notion of neural networks zooming into the most crucial architectures and
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describing their functionalities while Section 2.4 presents the state of the art literature for
neural network algorithms used in weather prediction applications exhibiting the evolution of
weather forecasting field interest from traditional Numerical Weather Prediction procedures
to the currently used Deep Learning Neural Networks. Following, in regards to the empirical
work done on this Thesis, the aim of this study is to develop a neural network algorithm that
is able to predict future weather patterns around port regions affecting port operations and
causing economic damages. In these lines, Section 3.1 portrays the data used for this analysis
that are comprised of event type incidents and their respective duration in various American
States. Next, Section 3.2 analyzes in detail the data preprocessing steps taken and the made
assumptions while Section 3.3 describes investigates various LSTM architectures and presents
the results of the best performing models per state and per season. Finally, Section 3.4 evaluates
the model performance over the tests sets and based on their performance the best models are
used to create forecasts for a time span of five days beyond the test set. General results,
implications, and future work is presented in Section 4. Appendix A and Appendix include
code for a complete step evaluation of one port in a four season period, along with tables with
all model performance metrics, tables and graphs with prediction accuracy over the test set
and forecasts for days beyond the test set for the best models.
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4 Literature Review

4.1 Climate Change link to extreme weather events

Evidence indicate that indeed increasing in frequency and intensity weather related events dis-
rupt the normal operational activities of ports around the globe resulting to increasing economic
damages. However, it is meaningful to briefly introduce evidence in literature that identify links
between climate change and weather events. In this framework, the next paragraphs introduce
basic concepts such as the differentiation between climate and weather events, the notion of
climate change and it’s possible causes, the consequences of climate change on our surrounding
environment, as well as the concept of ”extreme” natural events. Beyond doubt, the extreme
weather incidents announced the last years by the various natural catastrophe observatories
around the world, establish a relation regarding climate change, a relation that has become an
urgent and political topic (Khurana et al., 2022, ).

This discussion, has been a controversial topic as for it’s causes e.g. the percentage of the
intensification of natural catastrophes resulted by human behavior or/and resulted by a nat-
ural cycle more difficult for scientists to observe it due to human’s limited life span. Climate
pattern differentiations in comparison to prior decades, are caused by two usually opposite but
sometimes supplementary forces. On one hand, are the internal forces to the climate system
regarding the natural climate cycles. On the other hand, are the external forces for example,
changes in the sun’s radiation due to the length of sun cycle, volcanic activity, but also anthro-
pogenic forces resulting from excessive emissions of greenhouse gases when burning fossil fuels,
oil, land use etc. Regarding greenhouse gasses, the mechanism behind global warming is that
gasses released by human activity, in the atmosphere trap the heat existing in the atmosphere
that is responsible for preventing radiation from escaping into space. If the anthropogenic
greenhouse gasses didn’t exist, it is considered that radiation would escape space, avoiding the
earth’s overheating and balance earths climate to a situation where fauna and flora have used
to live and survive on this planet. In addition, greenhouse gasses display certain persistence,
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in the sense of remaining in the earth’s atmosphere for multiple decades, denoting that climate
change is bound to continue for the years to come even if we stopped emitting today. Shifts in
temperature, promote a variety of secondary consequences on hydrological systems, terrestrial
and marine ecosystems (Van Aalst, 2006, ). Such influence, involves global mean sea level rise,
extensive retreat of glaciers, reduction of lands covered in snow, melting of permafrost areas,
distortion of plant and animal ranges, early flower bloom, bird breeding seasons and develop-
ment of insect population, coral bleaching, extreme weather events etc.

Nevertheless, apart from the frequently discussed adverse consequences of climate change
there are also some positive outcomes. It is true that since climate change effects are highly
correlated with spatial longitude and latitude, in some regions, increase in average temperature
will improve and enhance agriculture as well as reducing the winter heating energy needs. It is
a tragic irony that regions which participated the minimum to greenhouse gasses concentration,
will experience the maximum ramifications.

On this framework, natural scientists state that external forces affecting the global average
climate conditions, lead to changes in extremes (Seneviratne et al., 2012, ). In this stage, is
meaningful to define climate extremes. And this is crucial because ”extreme” is a feature de-
pendent on space and time, it is not an absolute property of an event. Accordingly, ”climate
extremes” are typically contingent on the probability of occurrence of a specific number of events
or on the surpassing of a prior set threshold. Regarding the assumption of threshold, differ-
ent thresholds are applied, however, conventionally probabilities of occurrence 10%, 5%, 1% or
less across a specific time interval are used to describe the probability of extreme natural events.

It is useful to group the extreme climate incidents in relation to natural disasters, into the
following three categories, firstly we could observe extremes in climate variables such as tem-
perature, precipitation and wind, secondly detect weather and climate events which impact on
the occurrence of extremes in weather or climate variables such as monsoons, tropical cyclones,
heavy storms e.t.c. and thirdly, monitor consequences on the natural environment regarding
droughts, floods, extreme sea level, waves, landslides sand storms, dust storms and so forth.

Of course, the researcher may examine a specific natural catastrophic event aiming to un-
derstand its economics and social impacts, however nature has taught us that the only adjective
that we cannot name her is simple and linear. Having this in mind a very useful literature has
been developed around the idea of compound events (Brink et al., 2005, ) and (Svensson and
Jones, 2002, ). In particular, the idea behind compound events is that several mild weather or
natural events aggregated, and essentially their combination is the extreme event.

An other meaningful remark around extreme natural incidents, is the distinction between
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extreme weather incidents and extreme climate incidents. The first concept is referred to fluc-
tuating weather patterns, observed within small time frames e.g. lasting from some hours up
to several weeks, in comparison to the second concept referring to longer time scales presenting
more extreme natural events with higher persistence in time.

Usually, in scientific literature, extreme indices regard ”moderate extremes”, in contrast
exorbitant extremes are examined by employing the Extreme Value Theorem, a method aim-
ing to derive the probability distribution of rare incidents based on the right and left tails of
the general probability distribution, mainly below 1-5 % of the total sample (Coles et al., 2001, ).

In order to undercover the extremely significant link between unusual weather patterns and
average condition trends researchers utilize empirical analysis comparing present and historical
data, theoretical analysis applying simulations in global and regional climate models (GCMs,
RCMs), along with detecting patterns in insurance claims driven by catastrophes from extreme
natural incidents (Pielke, 2005, ) and (Pielke Jr et al., 2005, ).

Specifically, middle and high northern latitudes (Tropic of Cancer, Tropic of Capricorn and
in the Arctic and Antarctic Circle) are anticipated to display increased extreme precipitations
and by extension an shorter return period for intense rainfalls leading to increased floods and
landslides. Middle latitude zones had typically four seasons (regarding the 19th, 20th, 21th,
centuries) but new data identifying the real effects of climate change, show evidence of season
deviation phenomena. Low latitude regions, close to the equator, are anticipated on the con-
trary to have long dry periods, which will give rise to significant risk of extended droughts and
fires, especially during the summer season.

An other determinant factor that could play an important role on climate change is the
North Atlantic Oscillation. According to (Anderson and Bausch, 2006, ), when it is at it’s neg-
ative phase it may trigger dryer winter weather conditions resulting to less recharging of rivers,
and by extension to more intense summer droughts. Analysis studying the Atlantic Oscillation
decade per decade, since 1850, show that the increased frequency and intensity of Atlantic
tropical cyclones over the past few years, might be a result of a combination of the natural
cycle of Atlantic Oscillations and climate change. However from 1995 and the later years, it is
identified that climate change has higher impact on the observed increased catastrophes.

In fact, climate models evidence that looses from winter storms, are anticipated to double
until 2085 forcing some European regions to suffer from the impacts of climate change (Höppe
and Grimm, 2008, ). It can be concluded that climate change shifts acknowledged hazard risks,
but on the same time just as well increases the degree of uncertainty of intensity, frequency
and new phenomena of natural catastrophic disasters.
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Having stated the basic concepts of climate change and it’s relation to natural disasters
and extreme weather phenomena, we have set the ground for analyzing more the consequences
caused in human activity. Specifically, for the scope of this study, we will try to briefly present
evidence in literature indicating port disruptions due to unanticipated weather events such as
intense storm events, fog and heavy wind.

4.2 Climate Change link to Port management and operation dis-
ruptions

Although climate change is a phenomenon widely claimed to be part of a bigger climate cy-
cle of earth’s interchangeable climatic conditions withing the thousands of years, increased
anthropogenic emissions of CO2 accelerate it’s process and evolution. Climate change, is a con-
tinuously evolving condition that among other impacts such as disruption of biodiversity and
development of deceases in all species, increases the frequency of extreme weather events and
triggers the intensification per incident including sea rise level, tropical storms and typhoons,
shift of the absolute average ocean temperature and extreme storm incidents. Furthermore,
heavy rain exceeding quay well drainage capacity causing flooding, rising ocean temperature
causing the deterioration of water quality within harbors and augmentation of wave height
surmounting breakwater design levels (Yang and Ge, 2020, ) have a significant impact upon
man made infrastructures such as coastal settlements and ports. Focusing specifically on the
last type of structured space, ports play a key role in the international transportation of goods.
While land and air transportation are crucial transportation alternatives, marine transportation
has enabled the current consumption patterns, allowing for millions of containers filled with
commercial goods to be exchanged among continents in relatively short time while being also
economically more efficient than the other means of transport. Observing the image in a global
scale, it is estimated that 80% to 90%1 of the total magnitude of traded goods are transported
via the sea, while the estimations regarding marine trade anticipate a 4% rate of change for
the next three years (León-Mateos et al., 2021, ). Especially in the case of the United States
(US), the marine transportation ecosystem offers more than 23 million job positions, and main-
tains more than 99% of the international marine commerce, while according to the American
Association of Port Authorities, the indirect and direct impact of ports is estimated to create
more than $4.5 trillions every year (Wendler-Bosco and Nicholson, 2020, ). Certainly, in the
US are located some of the biggest commercial ports on earth e.g. the Port of New York and
New Jersey in New York, the Port of Los Angeles in California, the Port of Houston in Texas
etc. However mostly after 2005, is observed a growing literature of studies that investigate
the US port resilience to climate change related extreme weather events (Panahi et al., 2020,
), and highlight the intensification and expanding duration of weather events having a great

1https://unctad.org/publication/review-maritime-transport-2021
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negative impact among other social and economic factors, in ports as well. In particular, the
Superstorm Sandy in 2012, was registered as one of the most severe natural disasters that have
hit the US, leading to the loss of more than 200 human lives and caused close to $70 billion
in infrastructure and economic damages 2. The aforementioned superstorm, among the other
damages, disrupted the operation of the Port of New York and New Jersey for more than 8
days resulting in huge economic losses (Smythe, 2013, ).

Explicitly, according to United Nations Conference on Trade and Development some of the
most important potential climate change impacts on ports3 in relation to extreme weather
conditions (e.g. hurricanes, storms, floods, increased precipitation and wind) include:

Figure 1: Impacts of extreme weather conditions on ports based on UNCTAD

Assessing the additional impacts of climate change impacts on ports regarding rising of sea
levels in the long-run (Lenton et al., 2009, ) indicate that if by 2050 sea level has risen by
half a meter, the value of exposed assets in 136 port mega-cities will reach a magnitude of
$28 trillions. Following, extreme weather and climate conditions have a strong impact on the
overall operation activities of ports, disturbing the normal operation programmed schedules.
Specifically, it is shown that, intense storms and shift in sea level rise apart from flooding in
various regions of the port often results in increased downtime disturbing the supply systems

2https://www.nhc.noaa.gov/data/tcr/AL182012Sandy.pdf
3https://unctad.org/system/files/official- document/dtltlb2011d2en.pdf
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(Esteban et al., 2014, ). Elaborating, regarding the global supply chain, extreme weather events
consist crucial risk factors causing disruptions, delays, systems risk, forecast risk, intellectual
property risk, procurement risk, receivables risk, inventory risk and capacity risk (Hofmann,
2013, ). Additionally, the occurrence of an extreme weather event may cause electric power
shut downs for extended periods of time and in combination with the fact that human behavior
may become unpredictable after a disaster, could result to an unclear or mistaken flow of
information limiting effective communication much needed in such conditions (Wendler-Bosco
and Nicholson, 2020, ). Observing this complex problem, (Izaguirre et al., 2021, ) estimate
the future multi-hazard risk in global port operations by defining the risk function for ports
is a function of hazard, exposure and vulnerability and introduce changes only in the hazard
component to observe the risk of ports in 2100 under the assumption that no significant emission
reductions have taken place.

Moreover, (Rose and Wei, 2013, ) identifies disruptions in normal port operations have a
compound impact. This compound impact is elaborated in three main levels, the first accounts
for the port level that bears disruptions of imports and exports along with shift in port activi-
ties, the second monitor the macroeconomic level which includes intermediate good shortfalls,
final goods shortfalls and final demand decrease, while the third level accounts for the total
impacts referring to the effects in the surrounding region of the port and the permanent loss of
port business.

Apart from the port infrastructure losses and their sub-consequences in the whole supply
chain and economic stability, extreme weather events have a great impact on the vessels them-
selves (Wendler-Bosco and Nicholson, 2020, ) while is also observed a decrease in the container
throughput (Cao and Lam, 2019, ). In combination to the material losses, reputation losses
regarding to the effectiveness of the port could lead to less demand for the port that has not
taken the required adaptation measures (Cao and Lam, 2019, ), (Wendler-Bosco and Nicholson,
2020, ), (Athanasatos et al., 2014, ). In this context, it is meaningful to state that in general
identifying the climate related risks for a specific port is a very complex endeavor, according to
(Gharehgozli et al., 2017, ) consists a ”wicked problem”, and this is the reason why investment
by ports in disaster prevention is still limited in comparison to the real world needs. In these
lines, the measures that increase the port’s resilience (Cao and Lam, 2019, ) in climate change
related events account for improvement of port structures, improvement in port facilities and
other non-structural measures displayed in more detail in the following table.

(Alderson et al., 2015, ) focusing in the notion or port resilience, highlight the concept of
operational resilience, which is a term describing the ability of a system to absorb the impact
of an event/ shock ”without loosing its operational capacity”. Extending this concept, (León-
Mateos et al., 2021, ), create the Port Resilience Index (PRI) an indicator that measures the
capacity of a port to absorb and recover from the damages of an natural disaster event offering
a quantification of the total port resilience, the view of improving port’s adaptability and the
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Figure 2: Adaptation measures that increase port resilience against climate change

current performance of the port in terms of resilience against climate change related events.
Specifically, UNCTAD indicatively identifies a variety of measures to limit the adverse effects

of extreme storm events, presented in the tale below 4.

Figure 3: Adaptation measures that increase port resilience against extreme storm events

Summarizing, anthropogenic climate change has very strong impacts on the ”as we know it”
natural and artificial system. For this reason, mitigation measures are taken from many parts of
the society such as governments, companies, NGO’s etc. aiming to reduce a further disturbance
of climate. In parallel, the development of an extended toolbox of adaptation measures that

4https://www.nhc.noaa.gov/data/tcr/AL182012Sandy.pdf
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recognize that even in the case of net zero emissions in the close future, existing emissions in
the atmosphere are already causing and will cause more shifts in weather and climate patterns
is of utmost importance. Adaptation measures are also taken from various agents of the society
and economy, such as governments forming national adaptation plans5 and individuals who
wish to protect their properties from extreme weather events e.g. housing, companies and
factories infrastructures, farming landscapes etc. Among the other domains that are affected
heavily from climate change related events are commercial ports. Ports, from the ancient times
consisted the structural nodes around and due to which entire civilizations were developed
and thrived. Today, given that commercial port infrastructures are hubs that facilitate all
international trade functions, literature sheds light in the fact that in reality they are highly
vulnerable to climate change incidents, and the absence of appropriate adaptation measures
could jeopardize the global supply chain and established social stability in general in the case
of operation disruptions. Measures that investigate port disruption management and resilience
in general is a relatively new field of research however the inherent uncertainty of accurately
predicting climate and weather systems, restricts the undertaken port adaptation measures
needing expensive investments. Nonetheless, the cost of natural disaster prevention is estimated
to be less than the cost of treatment and this is getting more visible as previously considered
unsystematic climate change related adverse events become more systematic. In these lines, are
developed various statistical and machine learning algorithms aiming to capture the patterns of
weather related data so as to facilitate data driven choices and measures to prevent possible huge
economic losses in port authorities and other involved parties. In that regard, initiatives such as
the World Port Climate Initiative (WPCI), the World Port Climate Declaration (WPCD)(Ng
et al., 2018, ) and the World Ports Sustainability Program (WPSP)6 address the consequences
of climate change in the marine sector aiming to enhance and coordinate future sustainability
efforts of ports worldwide and foster international cooperation with partners in the supply
chain. Given this context, in the next chapters, we briefly present a view in the literature of
neural network algorithms that investigate robust patterns in weather data structures.

4.3 Neural Network forecasting algorithms for time series

Weather data related or not to climate change, present high seasonality, meaning a periodic
behaviour that describes the overall pattern of historical values normally anticipating to have
an impact on future values as well. Of course, climate science explores the cyclicality of weather
incidents happening and puts significant efforts to decompose the ”change” part of the ”normal”
pattern of weather/climate events. In essence, the following question is addressed: ”Newspa-
pers wrote today that last weeks cataclysmic flood was unprecedented, and I am wondering
did this event resulted from climate change?”. There is a variety of available tools able to

5https://www.epa.gov/greeningepa/climate-change-adaptation-plans
6https://sustainableworldports.org/
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recognise patterns in data structures linking today’s events to an ”old” trend but are also able
to distinguish new ”shocks” disturbing climate as we know it today. Traditionally, for time
series with seasonal variations, various seasonal adjustments methods are used. In more detail,
Seasonal autoregressive integrated moving average (ARIMA) models are used after achieving
stationarity via seasonally differencing the initial data. In this framework, seasonal unit root
models and periodic models were developed to tackle the difficulty in discriminating seasonal
from non seasonal fluctuations in time series data. Tests such as the Dickey-Fuller and the
Phillips-Perron are available, however they are not able to accurately identify a unit root and a
near unit root process. A significant limit of the aforementioned models is that they are heavily
dependent on their initial assumptions. Assumptions that are set without knowing the true
hidden mechanism of the data/climate/weather generating procedure. On this grounds, the
introduction of Artificial Neural Networks (ANN) on time series forecasting, overpasses this
limitation, since neural networks (NN) do not need strong specific assumptions to be made
about the model, because the NN model ”learns” while ”observing” and managing the fed
data properties that make NN a promising new tool treating the peculiarities of weather and
climate data. ANN can be used in various real world prediction problems, dealing with lin-
ear and non linear processes and are able to identify nonlinear trend and seasonality patterns
in data. Particularly, NN with detrending and deseasonalization perform considerably better
than seasonal ARIMA models in out-of-sample projections according to (Zhang and Qi, 2005,
). In the following paragraphs, we set the base for time series weather forecasting with artificial
neural network architectures by presenting basic NN architectures along with their conceptual
framework which by extension we will use to construct the port weather forecasting models
aimed at this thesis.

4.3.1 Artificial Neural Networks (ANNs)

The construction of ANNs is a scientific attempt to artificially mimic the way the human
nervous system makes decisions. Observing closely, scientists uncovered that the human brain
is a large connection of interconnected neurons. Neuron is considered a brain cell that collects,
processes, and disseminates electrical signals. Additionally, neurons are connected via synapses
and they get activated depending on the conditions of the neighboring neurons. In these concept
lines, a variety of simpler and more complex ANN architectures have been developed, including
different mechanisms of transmitting the information.

Initially, we observe a simple ANN with one hidden layer of two nodes. While the procedure
of the forward pass, the input x is assigned the weight w1 and inserts the node h1. Within
the node h1 the product of x and w1 is transformed by the activation function. The result
of this transformation, is the output of node h1 (ah1) which subsequently multiplied by w3,
inserts the output node o1. The same procedure follows x traversing the node h2 with output
ah2. The ah1 and ah2 multiplied respectively with weights w3 and w4 form a sum which
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enters o1 where again given the type of the activation function is transformed. The result
of this transformation forms the final output which is an estimation of y. For every x of the
input layer, the estimated y’s create the loss vector which, depending on the type of the loss
function calculates the difference between the true y and the estimated y. There are many loss
function choices such as the Mean Squared Error (MSE), the Mean Absolute Error (MAE),
the Binary Cross-Entropy, the Categorical Cross-Entropy Loss and other custom loss functions
such as the Kullback-Leibler divergence loss, the Hinge Loss etc. Now having formed the loss
vector in the forward pass, the neural network moves in the opposite direction conducting back
propagation. In this step, the network using the Chain Rule calculates the gradient vector of
the loss functions for every input x with respect to the weights. For each input x a gradient
loss vector is calculated, and summing each gradient for each input x the final loss vector is
formed. The dimensions of the total gradient loss vector is 1 times the number of weight in the
network. This way, the weights are optimized and the network repeats the forward propagation
given the updated weights and back propagation steps as many times as the epochs indicated
in the ANN architecture.

Figure 4: Simple ANN with one hidden layer.

Zooming into the hidden layer, a hidden layer may consist of single or multiple parallel
nodes. Each node is also called perceptron or neuron, artificially signifying the services of a
human brain cell. Zooming more, the perceptron accepts the sum of the output of the previous
layers times the respective weight. If the ANN architecture imposes a bias term then this bias
is also added in the sum forming a dot product of the input and the bias weight. The bias
weight is also optimized as all other weights do in the back propagation process. Including
a bias term has the effect of shifting the activation function by a constant amount w0j · ai

allowing the model to adjust the output of each node. This, helps the model learn complex
relations between inputs and outputs. The bias term is added to the weighted sum before being
passed through the activation function, however can some times lead to overfitting. The sum of
weights and inputs are transformed by the activation function forming the aj output for each
specific node.

There is a variety of activation functions available and the next paragraph briefly describes
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Figure 5: The Neuron of a simple ANN.

the most frequently used ones7. The purpose of an activation function is to introduce non-
linearity to the output of the neuron. This allows the model to be trained into more complex
relations. On this framework, the Linear activation function does exactly the opposite. Does
not introduce non-linearity, the model does not learn something new while it combines and
outputs in a sum form all the input dot products of weights and outputs of previous layers.
Often, the linear activation function is imposed in the output layer where all the network
collapses into one single layer that includes the actual estimated values. The Rectified Linear
Unit activation function (ReLU) introduces non-linearity in the node output transforming the
node output sum to zero if the output is zero or smaller than zero, or it maintains the output
if the output sum is greater than zero. An other frequently used activation function is the
Sigmoid activation function imposes the input sum to shrink in the range (0,1). In that case,
0.5 is considered the threshold meaning that if the sum is greater than 0.5 the output of the
activation will be 1 and if is less than 0.5 the output will be 0. Interpreting this result, an
output of 1 indicates that the neuron is activated transferring the signal and participating in
the learning of the model, while if the output is 0 indicates that the neuron is not activated.

7Source: https://iq.opengenus.org/content/images/2021/11/Comparion-of-Activation-Functions–1-.png
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Figure 6: Basic activation functions for ANNs.
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Further, an other classic choice is the Softmax activation function. This function, instead
of outputting actual values, it maps the input to a probability distribution8 over the output
classes where the sum of all derived probabilities equals to 1. The figure below displays all the
output probabilities over the entire input space. Given two input classes for simplicity in a
classification problem, we observe two Sigmoid functions spreading across opposite directions.
The cyan and magenta are in this case a 2D Gaussian distributions of the output. Increasing
the input of a certain class, we increase the output of that class moving along a Sigmoid curve
also moving along a decreasing Sigmoid curve for the other class.

Figure 7: Visualization of Softmax activation function.

Of course this is only a glance at the analysis and concepts of activation functions could be
elaborated in depth, however this is beyond the scope of this study. Now zooming out of the
perceptron again, it is important to mention that a ANN hidden layer may be constructed to
have different activation functions in each node and multiple parallel nodes.

Figure 8: Simple ANN with one hidden layer with multiple inputs, parallel hidden nodes in the
same hidden layer and multiple outputs.

8Source: https://github.com/elliotwaite/softmax-logit-paths
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4.3.2 DNN Deep Neural Networks

As an extension of the ”shallower” ANN with one or two hidden layers, is the Deep Neural Net-
works (DNN) architecture having three or more hidden layers and has been applied to a variety
of machine learning problems such as feature extraction, feature reduction, and classification.

Figure 9: DNN with multiple inputs, multiple hidden layers and multiple outputs.

At this point, it is significant to briefly describe Deep Belief Networks (DBNs). DBNs
are ANNs that consist of multiple hidden layers and are used for unsupervised learning tech-
niques. Observing the figure below, Layer 1 and Layer 2 of the network contain neurons with
undirected connections which form an associative memory, copying the biological neuron archi-
tecture (Awad and Khanna, 2015, ). However initially back-propagation for weight optimization
did not produce an accurate machine learning model. The problem lies withing the assumption
that the network layers are independet from each other. In essence, according to the Berkson’s
paradox, given two independent events the occurrence of one event negates or ”explains away”
the occurrence of the other in a way that one could obtain a negative correlation between
them. In this framework training DBNs was a difficult task. The solution to this problem was
introduced by (Hinton et al., 2006, ) that proposed a greedy training algorithm that trains the
restricted Boltzman machines (RBM) units independently before adjusting the weights using
an up-down algorithm to avoid underfitting.
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Figure 10: DNN with multiple inputs, multiple hidden layers and multiple outputs.

4.3.3 Simple RNN Recurrent Neural Networks

Recurrent Neural Networks are a class of the neural network algorithms that are mostly used in
tasks where sequence data need to be modeled. Text analysis, time series data, sales forecasting,
stock forecasting are some examples where RNNs are widely used offering prediction results
with high accuracy. Focusing on time series tasks, traditional statistical techniques such as
Autoregressive Integrated Moving Average (ARIMA), SARIMA accounting for seasonality in
data etc. use some window of the past values to predict the future value. In contrast, an RNN
model aiming to predict the new value, will take into account the total amount of past instances
in the data making sure that the sequence information is maintained. In this framework some
time window blocks could also be considered, but this is dependent on the RNN architecture
discussed below. More analytically, forward propagation through time is a key concept in simple
RNN structure.

Figure 11: Forward propagation RNN general architecture.

Observing the figure above, the input init of any dimensionality enters the hidden layer part
in orange of the RNN. The hidden layers may be of any number and having single or multiple
number of neurons each. Next, ŷ is the output of the RNN which is the estimation of the future
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value we want to predict. Along with the ŷ, we obtain ot which is an output with respect to
time. More analytically, assuming that the input in the RNN is the number of occurrences
of extreme weather event incidents for t = 1, for t = 2 the estimation of the next count of
instances ŷ2 will incorporate the information of the forecast of the previous time step ot1, this
is done for every input inserted in the RNN training the model, and this way the sequence
information is kept. Now, unfolding the general architecture of the described RNN we zoom
into the orange part of the above figure.

The expanded RNN architecture is visualized in the figure below.

Figure 12: Expanded RNN architecture.

The first element x1 of the four element time series is multiplied with the weight vector and
then it is passed to the first layer starting from the left side. In this particular example, the
hidden layer has four neurons hence the output of the first layer o1 is the sum of the first input
times each respective weight dedicated to each specific neuron passed through the respective
activation function. Having computed the o1 output, according to the RNN process, the same
output should be fed again to the same hidden neuron while in parallel for time t = 2 the next
element of the time series will get passed to the second hidden layer. As the second hidden
layer accepts the second element x2 with initial weight vector, is also accepts the output of the
previous layer o1 multiplied by a different weight wa. In essence, the output of the second layer
o2 is the sum of x2 times the weight vector plus the o1 times the wa, always passed through
the dedicated activation function. Since o2 is dependent on x2 and o1 this allows RNN to keep
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sequence information. At this point, we should note that in all four layers the same weight
vector w is assigned as the forward propagation takes place. The weight vector w will only be
updated in the backward propagation process conducting weight optimization. For time t = 3,
the output of the second layer is fed again to the same neurons, so o2 inserts layer 3 multiplied
with the same weight wa. Accordingly, the third element of the time series w1,3 is also getting
passed to layer 3. The output o3, wll be the sum of x3 times the initial weight vector plus the
output o2 times wa passed through the dedicated activation function. For the last hidden layer,
the output o4 will be x4 times the weight vector plus the output o3 times wb a different weight.
Finally the o4 times wc will be passed to the activation function of the output layer giving the
prediction. Then the loss function is computed subtracting the actual value from the predicted
value. The main goal of doing back propagation is to reduce the output of the loss function.
Focusing now on the back propagation procedure, using Chain Rule the derivative for each
weight is calculated. To update the weight wc for instance, the new wc weight will be equal
to the old weight wc minus the derivative of the loss function with respect to wc. Returning
back to layer 3, to update the weight vector w the first step is to calculate the derivative of the
loss function with respect to w. To do so, with the help of Chain Rule, the previous expression
equals with the dot product of the derivative of the loss function with respect to haty1, the
derivative of ŷ1 with respect to o4 and the derivative of o4 with respect to finally w vector.
We note that even though in forward propagation the weight vector w applied is always the
same, in the pack propagation pass, the vector will updated 4 times in the way it was described
above. Thus, all weights will be updated for the first epoch. This front and back pass will
be repeated as many iterations as it is imposed by the RNN architecture. Finally, after some
number of iterations the RNN will have optimized the weights and this way will be able to
reach the global minimum where the training process of the RNN will stop.

RNNs may have various structures9 in terms of input and output dimensions. In the case
of one − to − one structure, the feedforward RNN model accepts a single input and it outputs
a single output estimation with no temporal dependencies between them. However in the
case that the input data is for example built by the user to signify per year observations, a
typical format for time series, the predicted output after the training of the model, indicates
the forecast for that specific variable for the next year.

9https://stanford.edu/ shervine/teaching/cs-230/
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Figure 13: RNN one to one.

Next, in the case of a one − to − many RNN, the model structure accepts a single input
and it predicts a sequence of outputs. The initial input is fed into the RNN, and the output of
each time step is fed as the input for the next time step. One − to − many RNN structure, is
often used in tasks such as Music Generation. In that case, the RNN model is trained to take
a single input (a sequence of musical notes) and generate a longer sequence of musical notes
that follow a similar pattern. In this case, the RNN is trained to predict the next note in the
sequence based on the previous notes, and this process is repeated until the desired length of
the sequence is generated.

Figure 14: RNN one to many.

Following, when the RNN has a many−to−one structure, is accepts a sequence of inputs and
it predicts only one output. This structure, is commonly used in natural language processing
tasks, speech recognition ans sentiment analysis task where the model should take into account
various words and elements of a text and produce a sentiment score. This can be done using
various types of many-to-one RNN architectures, such as the basic RNN, LSTM, or GRU, RNN
structures that will be discussed in the next paragraphs.
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Figure 15: RNN many to one.

Further, many − to − many is an RNN model structure that accepts a sequence of inputs
and predicts a sequence of outputs. This is a useful structure, in the case where the user
identifies a correspondence between the elements of the input sequence and the elements of the
output sequence. The input sequence is inserted into the RNN one element at a time, and the
output sequence is generated in parallel. In the synchronous approach, the input and output
sequences have the same length, and each element of the input sequence is processed in parallel
with its corresponding element in the output sequence. This approach is commonly used in
tasks such as speech recognition and machine translation. In the asynchronous approach, the
input and output sequences can have different lengths, and the RNN continues to produce
output after the input sequence has ended. This approach is commonly used in tasks such as
video classification, where the RNN is trained to recognize actions or events in a sequence of
frames.

Figure 16: RNN many to many structures.

The left figure displays a model with more hidden layers that the number of input and
output sequence elements, while the right figure displays a model with as many hidden layers
as the number of input and output sequence elements.

26



4.3.4 Problems with Recurrent Neural Networks

Although simple RNN’s are easy to interpret and built, there are some important character-
istics in their architecture that are problematic in terms of their ability to accurately predict
unseen information. In the next paragraph these issues are discussed and visualized in order to
understand why in many time series tasks are often used LSTM’s or other more complex neural
network algorithms. As it was stated in the Chapter 2.3.3, RNN’s given the input conduct
forward propagation and backward propagation over time training the model. In the backward
passing, the derivative of the weights is updated continuously optimizing the assigned weights
with respect to time. Hence, while updating the weights, the information passes through the
designates activation function in each neuron. In case the activation function is a Sigmoid,
through the Chain Rule, the derivative will always be between 0 and 1. In the first back prop-
agation step, this may not be a problem, however updating all the weights from right to left,
leads to a very small value close to zero for the derivative which means that the initial weights
are negligibly updated which in extension means that the model does not learn well. Particu-
larly, observing the Figure 17 (a) the model will never converge to the global minimum point of
the gradient descent of the loss function because of the very small learning rate. Alternatively,
in case the activation function is ReLU, the derivative will be greater than 1, meaning that
towards the updating of the weights the learning rate will be so big causing the problem of
exploding gradient descent as displayed in the Figure 17 (b), that again doesn’t allow the RNN
to converge to the global minimum of the loss function resulting to bad training.

Figure 17: Vanishing and Exploding Gradient Decent at RNN.

Further, the ability to converge to the global minimum has also to do with the ”landscape”
of the loss function. On this context, the previous examples implies loss functions that are
convex. If the loss function is non-convex, then there is not only one minimum the global
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minimum but there could be also multiple local minima. Thus, when applying gradient descent
as optimization method in a non-convex function it is not certain that the reached minimum
is the global minimum, which means that the model will stop the learning process-training
without having optimized the weights no matter the number of iterations. Additionally, an
other landscape particularity of the loss function could be a ”Plateau” region where as the
RNN tries to learn by updating the weights, the weight correction (the derivative of the loss
function with respect to the weights) will be the same because the region of the objective
function is almost parallel to the horizontal axis. In that case, with a very small learning rate
the gradient of the loss function will not be able to reach the global minimum.

Figure 18: Problems with non-convex loss function in RNNs.

As a consequence, for non-convex loss functions instead of gradient-based optimization
algorithms there are various others that are able to overpass the discussed problem. A widely
used optimization algorithm is the Adaptive Moment Estimation (ADAM) optimizer which
contributes to the computation of learning rates for each weight w by using the first and second
moment of the gradient. ADAM optimizer requires less memory and outperforms on large
data sets. Additionally, the Stochastic Gradient Descent (SGD) by randomly selecting data
samples and updates the parameters according to the loss function. SGD converges faster than
the ordinary Gradient Descent and requests also less memory by not accumulating the non
optimized intermediate weights. Another optimization algorithm, is the Adaptive Gradient
Optimizer (Adagrad) which adapts the learning rate for each parameter based on the previous
gradient information during training. There are many more optimization algorithms for non-
convex objective functions but this is beyond the scope of this Thesis.

Now to overcome the Vanishing and Exploding Gradient Descent problems caused by the
simple RNN architecture, we could use models such as Long Short-Term Memory (LSTMs),
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more analytically presented in the next Chapter.

4.3.5 LSTM Long Short-Term Memory RNN’s

The visualization below displays a simple LSTM RNN cell ,for xt the inputs and Ht the outputs
for the given time. Note that the mechanism called ”Gate” refers to a neural network layer
inside the LSTM cell that regulates the flow of information being passes from one time step to
the next while performing the various operations described below.

Figure 19: LSTM cell

Zooming in this architecture, in ciel dashed region is the functions of the ”cell state” or
”memory cell”. This cell is used to remember and forget information. It accepts the previous
state output and conducts point-by-point multiplication between the previous state output
and the input. This results to a new vector that tells the LSTM cell the specific information it
needs to remember in case the context has changed. If the context of the input has not changed,
then the cell state remembers all the information form the previous state output. Next, the
point-by-point addition adds new information to the ”remembered” information vector. The
final output of the cell state will be the previous state output for the next cell for time t + 1.
Regarding the ”forget gate” in magenta, it accepts the input xt and the output of the previous
output Ht−1, concatenate them, assigning two different weights (plus bias if applied) and pass
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them through the Sigmoid activation function which decides at last what information to forget.
Next, from the ”input gate” in yellow, new information is added to the memory cell. In this
step, the input xt and the output of the previous output Ht−1 is passed through a Sigmoid
activation function squeezing the result between 0 and +1 and the same two inputs are passed
through a Tanh activation function which converts the input between -1 and +1. The outputs
of the two activation functions are point-by-point multiplied and whatever information is kept
is described with 1 in the output vector of the input gate. Then, this information as was
described before, is added point-by-point to the memory cell. In essence, the aforementioned
operations indicate that any new information from the Tanh activation function will be kept
if the input context has changed, only then it will be added to the memory cell. This way, the
previous state output is updated to the new state output (black arrow on the top of the LSTM
cell). The green region, is referred as the ”output gate”. What ever information was kept in
the memory cell, will be converted through the Tanh function to a value between -1 and +1,
and next will be point-to-point multiplied to the output of the Sigmoid activation function.
Conceptually, the output gate enables the LSTM cell to retrieve only the information which
have a meaningful context to add to the training of the model and that will be the output Ht

that will be passed to the next LSTM cell in time t + 1.
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4.3.6 Gated Recurrent Unit (GRU)

While LSTM has separately long term memory and short term memory, Gated Recurrent Unit
(GRU) is a modified version of LSTM which combines long and short memory into it’s hidden
state. Continuing with the comparison, LSTM has three gates, input, output and forget gate
while the GRU cell has only two gates, the ”update gate” and the ”reset gate”. GRU’s have
less tensor operations and parameters to update hence are more computationally efficient than
LSTM’s.

Figure 20: GRU cell

The role of the ”reset gate” gate is to control how much information we want to remove
from Ht−1 to Ht. Whereas, the ”update gate” controls how much information we want to add
to the previous information (from the new input xt) to Ht. Before the information enters the
next hidden layer new weights and biases are assigned in Ht−1, xt, and the activation functions
outputs w, u, v respectively as the typical neural network process. The weight 1 − Zt is the
complement of Zt to avoid including an additional gate. In more detail, supposing we are at
time t, Ht−1 is the information passing from the previous GRU cell to the current GRU cell.
The output of GRU cell at time t, is Ht which eventually is fed to the next GRU cell at time
t + 1. The information from Ht−1 and Ht, are the information stored in the hidden state of
GRU. The way the two gates help in changing the hidden state is by adding new information
and removing information. To add new information, a new candidate state ct is created to hold
the information which will be added to the previous information Ht−1 using the plus operation
in the yellow disc on the right. To remove information, from the hidden state, zt which is the
update gate, decides what part of the the previous time step Ht−1 can be taken forward to the
next time step Ht. Thus, following the red arrow of Ht−1 directed in passing through the second
Sigmoid and being filtered from zt, outputs the relevant information from the previous time
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step. Finally, information passed to the next GRU cell is Ht = (1 − Zt) · ct + Zt · Ht−1. Then,
the result of the hidden layer Ht is multiplied with the weight matrix u and is passed to the last
activation function Softmax which gives the estimation of ŷt, meaning the input xt mapped to
a probability distribution over the output classes. Indeed, the GRU model architecture as the
LSTM’s, solves the problem of vanishing gradient descent while conducting back propagation
weight optimization but it is more time efficient since it has less parameters to train.

4.3.7 Transformer models with Attention mechanism

In 2017, (Vaswani et al., 2017, ) introduced Transformers which is a radical NN model which
is an attention based encoder decoder architecture that is mostly used in natural language
processing (NLP) tasks such as language translation, language generation, text summarization,
question answering and sentiment analysis. Briefly, given sequential or structured input data
the attention mechanism allows the model to focus on specific parts of the input sequence
instead of the whole input set, based on the relevance of the target task. The reason why this
model architecture is considered better than the previously described model is because RNN’s
take into account historical inputs of a shorter time window hence they suffer from ”shorter
memory”. In the case for example of a language generation task, when the model generates a
longer text, vanilla RNN’s are not able to access words generated early in time sequence. The
same holds for LSTM’s and GRU’s, however the aforementioned allow for a longer historical
time window to reference from and this is the reason they are named long-short memory models.
In contrast, the attention mechanism theoretically and given enough compute resources, allows
for an infinite time window to reference from. In this context, the transformer model in the
previous example of the text generation, is able to reference to the whole text when generating a
new word and not only to a shorter window of the word sequence. On a high level, the encoder
part (on the left) maps an input sequence into an abstract continuous representation that holds
all the learned information of that input, the decoder part of the architecture (on the right)
takes that continuous representation and and progressively generates a single output while in
parallel feeds the previous outputs into the encoder recurrently until an ”end of sentence” token
is generated. Currently, there is great interest in this type of architecture and generally, the
attention mechanism can be applied in RNN’s, NLP models and Convolutional neural networks
(CNN’s) used in image and video tasks, improving the performance on language models.

Having presented briefly the basic NN architectures, we set the basis for the weather models
constructed in Chapter 3.4. Among all discussed NN architectures, we choose to focus on LSTM
models performing well in time series data aiming to forecast weather patterns in the future.
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Figure 21: The architecture of Transformer model from the initial paper (Vaswani et al., 2017,
)
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4.4 Neural Network models for weather prediction

Having described the basic architectures of NN algorithms, it is meaningful to investigate spe-
cific applications presented in the relative literature regarding NN and their contribution in the
field of weather prediction before structuring the models needed for this Thesis. The models
described below do not focus specifically on ports, instead they present a wider framework of
weather pattern forecasting useful for many applications amongst which is port resilience on
extreme weather events.

Currently, weather prediction is based on the Numerical Weather Prediction (NWP) pro-
cedure10 (Lorenc, 1986, ), (Bauer et al., 2015, ). However, limitations such as the sensitivity
to initial conditions of the model, the partial knowledge of the atmospheric physical mecha-
nisms while modeling, the enormous amount data obtained from sensors and from simulations,
the data set uncertainties in combination with spatio-temporal correlations, along with the
computationally expensive non-linear equation handling introduced the tool of artificial neu-
ral network as alternative model to traditional NWPs (Ren et al., 2021, ). Specifically, Deep
Learning Neural Networks (DLNN) perform well in situations where the system behaviour is
dominated by spatial or temporal context and thus there is a need of time and space feature ex-
traction, a typical example is the weather data forecasting. In this case, Deep Learning Weather
Prediction (DLWP) models treat weather data as a multi-dimensional time series problem.

Regarding the data features, different DLWP are applied in different big weather data struc-
tures aiming to reveal the linking mechanisms and to capture the weather pattern changes.
More precisely, on one hand real type data structures from in situ observations in the form of
longitude, latitude, level and time are efficiently handled by Autoencoder. On the other hand,
in the case of satellite image data, given the very big amount of image data produced each
day, Convolutional Neural Networks (CNN)++ are widely used for image processing and early
forecasting and warning of extreme weather events. Last but not least, in the case of long term
sequence weather data some times going back hundreds of years ago, are applied long-short
term memory (LSTM) models a special case of Recurrent neural networks (RNN) that handles
the problem of vanishing and exploding gradient descent of the loss function. LSTMs, are
effective on identifying long term sequences since they are equipped with a memory function
dedicated to make the model remember event incidents that it had seen in the distant past. In
this context LSTMs are suitable for long term weather forecasting and climate simulation data
structures.

Against this background, it is meaningful to mention two more NN model groups for weather
forecasting. Firstly, the Hybrid architecture Deep neural network (DNN) models. This family

10https://www.ncei.noaa.gov/products/weather-climate-models/numerical-weather-prediction
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of models focuses in extracting the spatio-temporal features of the weather data sets. The (Shi
et al., 2015, ) propose a Convolutional LSTM model aiming to predict the rainfall intensity on
a zero to six hours time frame offering early warning information for social protection schemes
and airport traffic management. To do so, the traditional LSTM model is equipped with a
convolutional layer in the encoding part of the NN incorporating the time and space link of
the meteorological data. This approach, increases the accuracy level of the network. Besides,
(Shi et al., 2017, ) suggest that Convolutional LSTM models are location invariant hence
there is a need for a model that could learn the location variant structure of the precipitation
data. In this framework, given the requirement for extensive, real-time and high-resolution
regional precipitation nowcasting led to the introduction of a Trajectory Gated Recurrent Unit
model that uses a sub network to output the state-to-state connection structures before state
transitions. Further, this paper constructs a benchmark data set containing radar echo data of
6 years from a Chinese region with the purpose of pushing nowcasting to be trained on real-time
learning achieving dynamic forecasting power. A balanced mean squared error and a balanced
mean absolute error is proposed to assign higher weight to precipitation with high intensity as
more appropriate evaluation metrics for the target forecasting task. Moreover, (Wang et al.,
2017, ) construct a predictive recurrent neural network based on the concept of a dual memory
structure that learns the spatial occurrences and the temporal variations of weather events
at the same time (spatio-temporal LSTM) trained on video data. An improvement of the
previous model is developed by (Wang et al., 2018, ), who built a causal LSTM with cascaded
dual memories able to reduce the gradient vanishing complications in deep-in-time predictive
models. Specifically, this paper introduces a gradient highway unit providing the gradients with
quick routes from future forecasts to back in time older inputs. In a Deep Convolutional Neural
Network (CNN) context (Agrawal et al., 2019, ) propose the usage of the U-Net architecture
initially used for biomedical image segmentation, for precipitation nowcasting. Specifically,
this model application treats forecasting as an image to image translation problem, accepts a
sequence of radar images and is able to generate a high-resolution 1km by 1km precipitation
image for the next hour. In that case, the traditional NWP weather prediction, is transformed
to a data driven input-output problem with images. Along similar lines, (Sønderby et al., 2020,
) built a CNN with attention mechanism called MetNet and use it in an application, in order
to forecast the location of the precipitation events in space. Particularly, MetNet accepts radar
and satellite image data and predicts precipitation up to 8 hours into the future, every 2 minutes
with latency in the order of seconds and at the same space resolution as U-Net, outperforming
NWP as well.

In the previous chapters we presented and discussed the basic NN architectures and their
functionalities. Further, we investigated various applications of NN in the literature of weather
prediction offering new tools to the traditional Numerical Weather Prediction field. Against
this background, the following chapters unfold the steps of port weather data preprocessing
and forecasting based on LSTM architectures aiming to investigate the way extreme weather
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incidents hinder the normal port operations.
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5 Research Design and Methodology

5.1 Data Description

Regarding the data used, this analysis uses open-source data from the National Oceanic and At-
mospheric Administration. Specifically, the time series data contain Severe Storms and Extreme
Events occurrences in various ports in USA. Extreme weather data cause severe damages to life
and property causing increased and often unexpected economic damages. More analytically,
the data contain 48 different types of severe events, from localized thunderstorms, tornadoes,
and flash floods to regional events such as hurricanes, derechos, and winter storms. These data
are collected by the National Weather Service. Weather offices detect events using instruments
and visual observations, and they also receive information from storm spotters - people who
call in to report severe events. Tornadoes, high wind speeds, and storm cell data are collected
with radar. Extreme weather events, in the database are selected based on the storm intensity,
causing loss of life, injuries, significant property damage, and/or disruption to commerce, and
rare or unusual storm weather phenomena along with significant meteorological events, such
as extreme temperature. Data contain numerical values and descriptive text. The data can be
found in the following link. https://www.ncei.noaa.gov/pub/data/swdi/stormevents/csvfiles.
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5.2 Data Cleaning

Conducting the data cleaning process, initially the raw csv files for the years 1995-2022 are
loaded containing 1.551.853 rows and 7 columns. The data for each year are stored in separate
data frames while for this analysis only the following variables are maintained displayed in the
following table.

Figure 22: Variables Description

The reason why we choose the specific time span in because the years after 1995 display
an interesting weather landscape and specifically severe storms, in comparison to the previous
years available in the NOAA’s data set, translating to continuously increasing billion-dollar
disasters11.

Figure 23: United States Billion-Dollar Disaster Events 1980-2021 (CPI-Adjusted) according
to NOAA NCEI.

The time span choice is confirmed by the NOAA historical data, where indeed after 1995
the total number of extreme weather registered incidents in the USA increases almost steadily.
Specifically, the number of severe storm events display a significant escalation, while this event

11https://www.climate.gov/news-features/blogs/beyond-data/2021-us-billion-dollar-weather-and-climate-
disasters-historical
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type is highly linked to port operation disruptions causing great economic damages.

Next, the separate data frames containing daily weather data for each specific year are
concatenated in a single data frame named DATA in order to facilitate the next cleaning
steps. Following, the columns MONTH NAME, BEGIN DAY , BEGIN DATE TIME

and END DATE TIME are renamed to MONTH, DAY , BEGIN TIME and END TIME

respectively. Additionally, months are mapped to their numerical value so as to enable sorting,
while by applying an additional filter, from the total set of States existing in the data set, only
the those that have big commercial ports are maintained12. Specifically, are maintained only
the following States with the 10 biggest commercial ports, CALIFORNIA with the Port of Los
Angeles, Port of Long Beach and Port of Oakland, GEORGIA with the Ports of Savannah and
Brunswick, WASHINGTON with the Port of Seattle and Port of Tacoma, TEXAS with the
Port of Houston, SOUTH CAROLINA with the Ports of Charleston and Georgetown, VIR-
GINIA with the Port of Virginia along with FLORIDA with the Port of Miami. Regarding the
Port of New York and the Port New Jersey, we maintain only the State of NEW YORK (Port
Authority of New York New Jersey). On these lines, is assumed that maintaining weather
data for the whole state of NEW JERSEY will lower the model accuracy since NEW JERSEY
is a very big state and the ports we are interested in are geographically very close.

Figure 24: Geographical proximity of Port of New York and New Jersey.

Further, the data frame DATA is checked for not having null values. Further, we create
12https://www.icontainers.com/us/2017/05/16/top-10-us-ports/
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a new column calculating the duration of the weather event by imposing datetime format to
the columns BEGIN TIME and END TIME and subtracting one out of the other. Be-
sides, the data set DATA is split into 8 different data frames by filtering the name of the state
of interest, namely CALIFORNIA all, NEW YORK all, GEORGIA all, WASHINGTON all,
VIRGINIA all, TEXAS all, SOUTH CAROLINA all, FLORIDA all. In all 8 data frames the
weather information is sorted firstly by year, next by month and lastly by day. Moreover, in
each separate state data frame, a new column is inserted containing the year, month and day in
a date time format and is set as index. Given the previous step, only the EVENT TYPE and
DURATION column are maintained. At this point, it should be mentioned that, the initial
data set contains registrations of 66 different types of weather events but for the purpose of
this analysis and in the lines of (Athanasatos et al., 2014, ) and (Cao and Lam, 2019, ) we filter
the 8 state data sets only for weather events that have significant impact on the port operation
routine. In this framework, each data frame is filtered for weather events of High Wind, Heavy
Rain, Winter Storm, Dense Fog, Thunderstorm Wind, Marine Thunderstorm Wind, Tornado,
Strong Wind, Flood, Marine High Wind, Dust Storm, Extreme Cold/Wind Chill, High Surf,
Flash Flood, Excessive Heat, Ice Storm, Coastal Flood, Tsunami, Marine Hail, Marine Strong
Wind, Tropical Storm, Marine Dense Fog and Marine Tropical Storm types.

Additionally, the initial data set contained weather event registrations that often were mul-
tiple for one day. Meaning, for the same day the data had multiple registrations of events with
different duration, while the sequence of days didn’t have a constant step e.g. registrations for
every consecutive day. The first problem is treated by grouping each state data set by event
type and by duration. Hence, after this transformation the data set contains for a specific day
the event types in a joined string (e.g. ”Flash Flood,Flood”) accompanied by the aggregated
duration of the total number of events for that day. The second problem of the missing days
is treated by expanding the data set of each port including the missing days, where we do the
assumption that the missing day, was a day that was overall good and not sever weather events
occurred. In this context, we fill the NaN values that were summoned after expanding the data
set to its full per day length imposing an EV ENT TY PE of ”No event” and a DURATION

of ”0 days 24:00:00”. Furthermore, regarding DURATION we faced an other challenge regard-
ing the aggregation of duration of the registered EV ENT TY PES. In practice, we observed
that the event types were registered in the system probably by different radars, where multiple
radars recognized the same signal. Hence, often when adding the various event types for specific
day, the duration sums up to more than 24 hours which is something not possible. The way we
decided to encounter this problem since data for radar locations are not available in the raw
data set to choose only a single one, is to filter the registrations in all 8 data frames and when a
duration of a ”bad weather” day incidents overpass 24 consecutive hours, then we assume that
in all 24 hours of the day intense weather events were occurring, and we state that by replacing
the previous duration with the 24 : 00 : 00 format. After all the aforementioned preprocessing
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steps, the 8 data frames per state are grouped by season to prevent accuracy failures due to
the inherent seasonality of weather data sets.

Next, the final preprocessing step is the transformation of the created data sets to a for-
mat that could be fed to an LSTM architecture. To do so, taking the example of the port
of Florida, the four seasonal subsets fl autumn, fl winter, fl spring, fl summer are pre-
processed. Firstly, the column of DURATION is transformed to integer seconds type, and
next EVENT TYPE column is transformed to string format filling the NAN values with the
empty string. Secondly, the EVENT TYPE column in all 4 season data sets is transformed
using a LabelEncoder into numerical values. Thirdly, the seasonal data sets are scaled using
the MinMaxScaler because event types have values between 0 and 185 mostly while duration
has often 4 or 5 digit number, preventing LSTM to perform. Finally, an important step is to
transform the four data frames into 4 arrays, from which the train and tests sets are created
using a test size of 10%. The number of past values the LSTM will depend on to predict the
future is imposed at five for a multivariate (n features = 2 ) prediction. TimeseriesGenerator

is used to handle variable length data sequences conducting the final transformation of train-
ing and tests sets to enter the LSTM. For the state of Florida, there are 4 couples of train
and test set for each season, e.g., generatorTrain fl AUTUMN used to train the model and
generatorTest fl AUTUMN used as validation set to test the model accuracy in unseen data.
The data analysis and forecasting that will be elaborated in the following section, are applied
on each clean 8 state data sets and for each of the four seasons. At this point it is crucial to
state that given the lack of data specifically from each port region, we make the assumption
that the data reference to the port location and that the port is in the center of gravity of
the state. The next figure is a visualization of the ports13 under investigation throughout this
thesis.

Figure 25: Geographical locations of the ports under observation

13https://www.container-xchange.com/blog/busiest-ports-in-the-us/
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In the next chapter, we present the experiments regarding alternative LSTM architectures.
Moreover, are presented the best model choices upon which weather forecasts are estimated
aiming to explore possible future port operation disturbances.
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5.3 Model Application

Investigating the best LSTM architectures are initially tested various alternatives presented in
the table below. Based on this, we obtain the knowledge that the architecture of model A,
comprising of two LSTM layers with 100 neurons each, stochastic gradient descent optimizer,
ReLU activation function and mean squared error as loss metric, perform better that the other
experimental models. In addition, model G applying the Adam optimizer and the H1.3. apply-
ing a LeakyRelu (alpha=0.2) activation function perform also relatively well. The table below
displays the first attempt to determine the orientation towards the decision of the appropriate
model architecture given the port data characteristics.

Figure 26: LSTM architecture investigation

In this direction, we expand the investigation by forming three models trained for various
epochs as presented in the table below. The group of three models is applied in every state for
all four seasons resulting in training a total of 96 models. The table below, displays indicatively
the group of models applied for biggest commercial port of Texas for the autumn season.

Observing the model results we obtain the following insights. Firstly, different port re-
gions have unique climatic characteristics which are identified by the LSTM models during the
training steps. Thus, we consider meaningful to present the best case and the least best case
encountered while training the three LSTM models for the various ports and seasons. Indeed
we notice that for example the commercial port in the State of Georgia has a more stable cli-
matic conditions, meaning less combinations of extreme weather events, throughout the years
and this is translated into higher accuracy in the training sets presented in the figures below.
Specifically the aforementioned port is the only case where the three LSTM models perform
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Figure 27: Chosen LSTM model architectures for Texas in Autumn

relatively well in the training set for more than one season.
Alternatively, for the commercial ports of Florida, given the rich landscape of climatic

conditions14 the applied models fail to achieve accuracy higher than 46,6% even on the training
set for all seasons. A more analytical view of the Florida models performance is presented in
the table below.

As general remarks, we note that consistently for summer season all three models achieve
high accuracy in the training set avoiding overfitting for the majority of States (all except
Florida ports). Further, the complexity of weather events in winter season in all States results to
low performance of all LSTM models. Spring and Autumn present a mix of performance results
as anticipated from the inherent characteristics of those seasons. In terms of model comparison
in most cases model2 and model3 perform better than model1 and this is an expected outcome
since both models use Adam instead of SGD optimizer which in bigger data sets performs
better by using adaptive learning rates, incorporating momentum accelerating convergence and
applying a bias correction mechanism. All models performance details are presented analytically
in Appendix B.

14https://floridaclimateinstitute.org/docs/climatebook/Ch20-Collins.pdf
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Figure 28: Performance of LSTM models for Georgia ports for every season
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Figure 29: Performance of LSTM models for Florida for every season
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5.4 Model evaluation

In the process of evaluating the predicting ability of trained models is firstly investigated the
performance over the test set and secondly a forecast for the next five days beyond the test set.
Among the 96 models, and given the challenging task of accurate weather prediction a threshold
of 55% accuracy over the training set is applied. The results over the test set for those models
are analytically presented in the Appendix B. Indicatively, in the two figures below is presented
the accuracy percentage of model3 in winter California and in summer South Carolina. More
analytically, the graph on the left displays the loss minimization over the training epochs and
the respective results over the test set for each specific port/season. We note that since event
types are different per region and per season y-axis has max value the maximum number of
event one-hot-encoding while it is crucial to mention event types is a discrete variable. For
example, in Figure 29 on the left, from 1995-2022 California has registered 175 different event
type combinations. On the x-axis are displayed the first 20 days of the data set since after 20
days the LSTM weather prediction model loses it’s predictive power because the occurrence of
weather events in the far future becomes even more uncertain. Regarding the graph, for day
1 the model predicted the true value of test set, denoted by a red dot. Subsequently, for the
second day the model predicted a different value from the true hence this difference is denoted
by a gray dot (the true) falling not in the same position as the blue dot (model prediction).
In any case that the true does no equal the predicted value, the proximity of the two on the
graph does not signify a gradually better model since the event types are encoded as distinct
incidents and all 175 represent weather events that jeopardize equally the resilience of the port.
In this context, the visualization of predicted and true values on the test set in this specific
case indicates that the model was able to predict correctly the 30% of the 20 days. The best
accuracy for all ports and seasons over the test set is 50% and the worse is 10% with an average
predictive ability of 27%.
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Figure 30: On the left, model loss stops decreasing after the first period, on the right are
presented the predictions over the first 20 days on the test set of winter California port.

Figure 31: On the left, model loss decrease over the 50 training epochs, on the right are
presented the predictions over the first 20 days on the test set of summer South Carolina port.

48



Finally, the forecast for the next 5 days beyond the test set are presented on the figure below.
Interpreting this result, signifies that an extra assumption. More analytically, we assume that
the prediction for the next 5 days15 for example in winter California ports is related to the
previous winter months from the previous years starting from 1995. However, the magnitude of
data allows us to claim that weather patterns related to climate change have been incorporated
in the past winter days. Although the aforementioned affirmation is rational and true, we note
that the prediction of the next 5 winter days in California, is related to the way LSTM is
structured to identify weather patterns in the past winter seasons but is also related in fact to
the specific year’s registered events independent of the season. All model forecasts for the next
five days are presented analytically in the Appendix B.

Figure 32: Indicative table of predictions beyond the test set

15The forecast for winter California ports refers to the days: 1-12-2023, 2-12-2023, 3-12-2023, 4-12-2023,
5-12-2023, and accordingly for the other ports/seasons
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6 Conclusion

The ambition of the present Thesis is to investigate the link between climate change related
extreme weather events to port resilience. The proposed methodology consists in building
neural network models able to provide reliable weather predictions. Discussing both man-
made and natural factors, the thesis introduces the idea of climate change, exploring into
the literature to examine how extreme weather events affect port operations. The economic
effects of weather-related port damages and disruptions are also examined along with potential
adaptation strategies that might make ports less susceptible to the impacts of climate change.
Furthermore, presenting the neural network applications used in weather prediction, we develop
three LSTM models which are trained for eight different port regions and for four seasons each.
Models with higher accuracy are used to create forecasts over the test and five days beyond the
test set. Based on the model predictions, we can summarize some significant remarks in the
following three points:

1. Models that seem to be robust in some ports are less robust in others. This is an antici-
pated result, since different states that accommodate big commercial ports, face different
climatic conditions due to their geographic location. For example, the same three models
that perform well in the two big ports of Georgia, achieve low performance in the case of
Florida’s commercial port. This fact establish the need for different model architectures
built taking into account the specific climatic conditions of each port.

2. Models perform better on summer seasons for the majority of the ports in comparison to
the other seasons, due to the facts that summer months tend to have less intense and less
frequent weather incidents.

3. The best achieved accuracy from all 96 trained models is 50% over the test set, however
this is an expected result since raw data include registered weather event types form
different radars around each state. We consider of at most importance that in order to
train a weather forecasting LSTM’s able to achieve high accuracy is needed to feed them
with historical event registrations taken from the same radar station close to the port.
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Certainly, the present Thesis sets a well-established ground with respect to a neural network
application for weather prediction in port regions. Nevertheless, regarding our future work, we
endeavor to extend this application linking it to an elaborate analysis that prices the poten-
tial economic damage of the examined ports due to increase in frequency and intensity extreme
weather events. This extension, could investigate a pivotal concern for port authorities, govern-
ments, insurance companies and ship owners that will be a significant addition to the ongoing
research for academic purposes and real world business needs.
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7 Appendix A

# Dependencies

import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
from tensorflow.keras.models import load_model
from sklearn.preprocessing import MinMaxScaler
import keras
from sklearn.model_selection import train_test_split
import tensorflow as tf
from keras.models import Sequential
import pandas as pd
from keras.layers import Dense
from keras.layers import LSTM
from tensorflow.keras.layers import *
from tensorflow.keras.callbacks import ModelCheckpoint
from tensorflow.keras.losses import MeanSquaredError
from tensorflow.keras.metrics import RootMeanSquaredError
from tensorflow.keras.optimizers import Adam
from tensorflow.keras import optimizers
from sklearn.metrics import r2_score, explained_variance_score
from keras.preprocessing.sequence import TimeseriesGenerator
from keras.optimizers import SGD
import time
from sklearn.preprocessing import LabelEncoder
from sklearn.preprocessing import OneHotEncoder

52



# Import raw data from directory

data22 = pd.read_csv("storm_data2022.csv")
data21 = pd.read_csv("storm_data2021.csv")
data20 = pd.read_csv("storm_data2020.csv")
data19 = pd.read_csv("storm_data2019.csv")
data18 = pd.read_csv("storm_data2018.csv")
data17 = pd.read_csv("storm_data2017.csv")
data16 = pd.read_csv("storm_data2016.csv")
data15 = pd.read_csv("storm_data2015.csv")
data14 = pd.read_csv("storm_data2014.csv")
data13 = pd.read_csv("storm_data2013.csv")
data12 = pd.read_csv("storm_data2012.csv")
data11 = pd.read_csv("storm_data2011.csv")
data10 = pd.read_csv("storm_data2010.csv")
data09 = pd.read_csv("storm_data2009.csv")
data08 = pd.read_csv("storm_data2008.csv")
data07 = pd.read_csv("storm_data2007.csv")
data06 = pd.read_csv("storm_data2006.csv")
data05 = pd.read_csv("storm_data2005.csv")
data04 = pd.read_csv("storm_data2004.csv")
data03 = pd.read_csv("storm_data2003.csv")
data02 = pd.read_csv("storm_data2002.csv")
data01 = pd.read_csv("storm_data2001.csv")
data00 = pd.read_csv("storm_data2000.csv")
data99 = pd.read_csv("storm_data1999.csv")
data98 = pd.read_csv("storm_data1998.csv")
data97 = pd.read_csv("storm_data1997.csv")
data96 = pd.read_csv("storm_data1996.csv")
data95 = pd.read_csv("storm_data1995.csv")

# Keep only columns of interest

data22 = data22[[’YEAR’, ’MONTH_NAME’, ’BEGIN_DAY’, ’BEGIN_DATE_TIME’,’
END_DATE_TIME’,

’STATE’, ’EVENT_TYPE’]]
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data21 = data21[[’YEAR’, ’MONTH_NAME’, ’BEGIN_DAY’, ’BEGIN_DATE_TIME’,’
END_DATE_TIME’,

’STATE’, ’EVENT_TYPE’]]
data20 = data20[[’YEAR’, ’MONTH_NAME’, ’BEGIN_DAY’, ’BEGIN_DATE_TIME’,’

END_DATE_TIME’,
’STATE’, ’EVENT_TYPE’]]

data19=data19[[’YEAR’, ’MONTH_NAME’, ’BEGIN_DAY’, ’BEGIN_DATE_TIME’,’
END_DATE_TIME’,

’STATE’, ’EVENT_TYPE’]]
data18=data18[[’YEAR’, ’MONTH_NAME’, ’BEGIN_DAY’, ’BEGIN_DATE_TIME’,’

END_DATE_TIME’,
’STATE’, ’EVENT_TYPE’]]

data17=data17[[’YEAR’, ’MONTH_NAME’, ’BEGIN_DAY’, ’BEGIN_DATE_TIME’,’
END_DATE_TIME’,

’STATE’, ’EVENT_TYPE’]]
data16=data16[[’YEAR’, ’MONTH_NAME’, ’BEGIN_DAY’, ’BEGIN_DATE_TIME’,’

END_DATE_TIME’,
’STATE’, ’EVENT_TYPE’]]

data15=data15[[’YEAR’, ’MONTH_NAME’, ’BEGIN_DAY’, ’BEGIN_DATE_TIME’,’
END_DATE_TIME’,

’STATE’, ’EVENT_TYPE’]]
data14=data14[[’YEAR’, ’MONTH_NAME’, ’BEGIN_DAY’, ’BEGIN_DATE_TIME’,’

END_DATE_TIME’,
’STATE’, ’EVENT_TYPE’]]

data13=data13[[’YEAR’, ’MONTH_NAME’, ’BEGIN_DAY’, ’BEGIN_DATE_TIME’,’
END_DATE_TIME’,

’STATE’, ’EVENT_TYPE’]]
data12=data12[[’YEAR’, ’MONTH_NAME’, ’BEGIN_DAY’, ’BEGIN_DATE_TIME’,’

END_DATE_TIME’,
’STATE’, ’EVENT_TYPE’]]

data11=data11[[’YEAR’, ’MONTH_NAME’, ’BEGIN_DAY’, ’BEGIN_DATE_TIME’,’
END_DATE_TIME’,

’STATE’, ’EVENT_TYPE’]]
data10=data10[[’YEAR’, ’MONTH_NAME’, ’BEGIN_DAY’, ’BEGIN_DATE_TIME’,’

END_DATE_TIME’,
’STATE’, ’EVENT_TYPE’]]

data09=data09[[’YEAR’, ’MONTH_NAME’, ’BEGIN_DAY’, ’BEGIN_DATE_TIME’,’
END_DATE_TIME’,

’STATE’, ’EVENT_TYPE’]]
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data08=data08[[’YEAR’, ’MONTH_NAME’, ’BEGIN_DAY’, ’BEGIN_DATE_TIME’,’
END_DATE_TIME’,

’STATE’, ’EVENT_TYPE’]]
data07=data07[[’YEAR’, ’MONTH_NAME’, ’BEGIN_DAY’, ’BEGIN_DATE_TIME’,’

END_DATE_TIME’,
’STATE’, ’EVENT_TYPE’]]

data06=data06[[’YEAR’, ’MONTH_NAME’, ’BEGIN_DAY’, ’BEGIN_DATE_TIME’,’
END_DATE_TIME’,

’STATE’, ’EVENT_TYPE’]]
data05=data05[[’YEAR’, ’MONTH_NAME’, ’BEGIN_DAY’, ’BEGIN_DATE_TIME’,’

END_DATE_TIME’,
’STATE’, ’EVENT_TYPE’]]

data04=data04[[’YEAR’, ’MONTH_NAME’, ’BEGIN_DAY’, ’BEGIN_DATE_TIME’,’
END_DATE_TIME’,

’STATE’, ’EVENT_TYPE’]]
data03=data03[[’YEAR’, ’MONTH_NAME’, ’BEGIN_DAY’, ’BEGIN_DATE_TIME’,’

END_DATE_TIME’,
’STATE’, ’EVENT_TYPE’]]

data02=data02[[’YEAR’, ’MONTH_NAME’, ’BEGIN_DAY’, ’BEGIN_DATE_TIME’,’
END_DATE_TIME’,

’STATE’, ’EVENT_TYPE’]]
data01=data01[[’YEAR’, ’MONTH_NAME’, ’BEGIN_DAY’, ’BEGIN_DATE_TIME’,’

END_DATE_TIME’,
’STATE’, ’EVENT_TYPE’]]

data00=data00[[’YEAR’, ’MONTH_NAME’, ’BEGIN_DAY’, ’BEGIN_DATE_TIME’,’
END_DATE_TIME’,

’STATE’, ’EVENT_TYPE’]]
data99=data99[[’YEAR’, ’MONTH_NAME’, ’BEGIN_DAY’, ’BEGIN_DATE_TIME’,’

END_DATE_TIME’,
’STATE’, ’EVENT_TYPE’]]

data98=data98[[’YEAR’, ’MONTH_NAME’, ’BEGIN_DAY’, ’BEGIN_DATE_TIME’,’
END_DATE_TIME’,

’STATE’, ’EVENT_TYPE’]]
data97=data97[[’YEAR’, ’MONTH_NAME’, ’BEGIN_DAY’, ’BEGIN_DATE_TIME’,’

END_DATE_TIME’,
’STATE’, ’EVENT_TYPE’]]

data96=data96[[’YEAR’, ’MONTH_NAME’, ’BEGIN_DAY’, ’BEGIN_DATE_TIME’,’
END_DATE_TIME’,

’STATE’, ’EVENT_TYPE’]]
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data95=data95[[’YEAR’, ’MONTH_NAME’, ’BEGIN_DAY’, ’BEGIN_DATE_TIME’,’
END_DATE_TIME’,

’STATE’, ’EVENT_TYPE’]]

#Merge all data frames in a single data frame

all_data = [data22, data21, data20, data19, data18, data17, data16, data15,
data14, data13, data12,

data11, data10, data09, data08, data07, data06, data05, data04,
data03, data02, data01,

data00, data99, data98, data97, data96, data95]

DATA = pd.concat(all_data)

# Replace column names

DATA.rename(columns={"MONTH_NAME": "MONTH"}, inplace=True)
DATA.rename(columns={"BEGIN_DAY": "DAY"}, inplace=True)
DATA.rename(columns={"BEGIN_DATE_TIME": "BEGIN_TIME"}, inplace=True)
DATA.rename(columns={"END_DATE_TIME": "END_TIME"}, inplace=True)

# Replace month names

m = {’January’:1, ’February’:2, ’March’:3, ’April’:4, ’May’:5, ’June’:6, ’July
’:7, ’August’:8, ’September’:9, ’October’:10, ’November’:11, ’December’:12}

DATA.MONTH = DATA.MONTH.map(m)

# Keep only extreme weather events that have strong impact on port
resilience

DATA = DATA[DATA.EVENT_TYPE.isin([’High␣Wind’,’Heavy␣Rain’, ’Winter␣Storm’, ’
Dense␣Fog’, ’Thunderstorm␣Wind’,

’Marine␣Thunderstorm␣Wind’,’Tornado’,’Strong␣Wind’,’Flood’, ’Marine␣High
␣Wind’, ’Dust␣Storm’, ’Extreme␣Cold/Wind␣Chill’, ’High␣Surf’, ’Flash
␣Flood’,

’Excessive␣Heat’, ’Ice␣Storm’, ’Coastal␣Flood’, ’Tsunami’, ’Marine␣Hail’
, ’Marine␣Strong␣Wind’, ’Tropical␣Storm’, ’Marine␣Dense␣Fog’, ’
Marine␣Tropical␣Storm’

])]
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# Replace event names

e = {’High␣Wind’: ’A’,
’Heavy␣Rain’: ’B’,
’Winter␣Storm’: ’C’,
’Dense␣Fog’: ’D’,
’Thunderstorm␣Wind’: ’E’,
’Marine␣Thunderstorm␣Wind’:’F’,
’Tornado’: ’G’,
’Strong␣Wind’:’H’,
’Flood’:’I’,
’Marine␣High␣Wind’:’J’,
’Dust␣Storm’:’K’,
’Extreme␣Cold/Wind␣Chill’:’L’,
’High␣Surf’:’M’,
’Flash␣Flood’:’N’,
’Excessive␣Heat’:’O’,
’Ice␣Storm’:’P’,
’Coastal␣Flood’:’Q’,
’Tsunami’:’R’,
’Marine␣Hail’:’S’,
’Marine␣Strong␣Wind’:’T’,
’Tropical␣Storm’:’U’,
’Marine␣Dense␣Fog’:’V’,
’Marine␣Tropical␣Storm’:’W’}

DATA.EVENT_TYPE= DATA.EVENT_TYPE.map(e)

DATA_1 = DATA

# Maintain only rows for the states with big commercial ports

STATES_ports = [’CALIFORNIA’, ’NEW␣YORK’, ’GEORGIA’, ’WASHINGTON’, ’VIRGINIA’,
’TEXAS’, ’SOUTH␣CAROLINA’, ’FLORIDA’]

DATA_2 = DATA_1[DATA_1.STATE.isin([’CALIFORNIA’, ’NEW␣YORK’, ’GEORGIA’, ’
WASHINGTON’, ’VIRGINIA’, ’TEXAS’, ’SOUTH␣CAROLINA’, ’FLORIDA’])]

#Check for NA and null values
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DATA_2.isnull().sum()

# Set format for every column

DATA_2.EVENT_TYPE.astype(str)
DATA_2 = DATA_2.astype({’YEAR’:’int32’, ’MONTH’:’int32’, ’DAY’:’int32’, ’STATE

’:’category’, ’EVENT_TYPE’:’category’})

# Calculate duration

DATA_2[’BEGIN_TIME’] = pd.to_datetime(DATA_2[’BEGIN_TIME’])
DATA_2[’END_TIME’] = pd.to_datetime(DATA_2[’END_TIME’])
DATA_2[’DURATION’] = DATA_2[’END_TIME’] - DATA_2[’BEGIN_TIME’]
DATA_2[’BEGIN_TIME’] = DATA_2[’BEGIN_TIME’].dt.time
DATA_2[’END_TIME’] = DATA_2[’END_TIME’].dt.time

DATA_3 = DATA_2

# Filter dataframe to keep only events that have DURATION greater that 30
min

DATA_4 = DATA_3[DATA_3[’DURATION’] >= ’0␣days␣0:30:00’]

# Data Preprocessing for CALIFORNIA and forecasing models

CALIFORNIA_all = DATA_4[DATA_4["STATE"]=="CALIFORNIA"]
CALIFORNIA_all.sort_values(by=[’YEAR’, ’MONTH’, ’DAY’])
CALIFORNIA_all_s1 = CALIFORNIA_all

#Create new colmn date combining YEAR,MONTH,DAY

CALIFORNIA_all_s1[’date’] = pd.to_datetime(CALIFORNIA_all_s1[[’YEAR’, ’MONTH’,
’DAY’]])

# Set column date as index

CALIFORNIA_all_s1.set_index(’date’, inplace=True)
CALIFORNIA_all_s2 = CALIFORNIA_all_s1
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# Keep only the two columns

CALIFORNIA_all_s3 = CALIFORNIA_all_s2[[’EVENT_TYPE’, ’DURATION’]]

# Group data frame by day and sum the duration of the events

CALIFORNIA_event_type = CALIFORNIA_all_s3.groupby([’date’], as_index =True).
agg({’EVENT_TYPE’:’’.join})

CALIFORNIA_duration = CALIFORNIA_all_s3.groupby([’date’], as_index =True).agg
({’DURATION’:’sum’})

CALIFORNIA_all_s4 = pd.merge_asof(CALIFORNIA_event_type, CALIFORNIA_duration,
on=’date’, direction=’forward’)

# Maintain unique events and put it in a list in the EVENT_TYPE column

CALIFORNIA_all_s4[’EVENT_TYPE’] = CALIFORNIA_all_s4[’EVENT_TYPE’].str.replace(
’,’,’’)

CALIFORNIA_all_s4[’EVENT_TYPE’] = CALIFORNIA_all_s4[’EVENT_TYPE’].apply(list
,1)

CALIFORNIA_all_s4[’EVENT_TYPE’] = CALIFORNIA_all_s4.apply(lambda row: list(
set(row[’EVENT_TYPE’])) , axis=1)

CALIFORNIA_all_s5 = CALIFORNIA_all_s4

# Sort data frame by date

CALIFORNIA_all_s5_sorted = CALIFORNIA_all_s5.sort_values(by=’date’)

# Fill missing values
cal = CALIFORNIA_all_s5_sorted
cal1 = cal.set_index(’date’)
cal_all_days = pd.date_range(cal1.index.min(), cal1.index.max(), freq=’D’)
cal2 = cal1.reindex(cal_all_days)
cal2.EVENT_TYPE = cal2.EVENT_TYPE.fillna(’Z’).apply(list)
cal2.DURATION = cal2.DURATION.fillna(’0␣days␣24:00:00’)

# Filter data frame to keep only events that have daily aggregated DURATION
of the events less than 24 hours
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cal2_=cal2
cal2_[’DURATION’] = cal2_[’DURATION’].mask(cal2_[’DURATION’] > ’1␣days␣0:00:00

’, ’1␣days␣0:00:00’)

# Create new column "total_sec" and drop DURATION column

cal2_[’total_sec’] = cal2_.DURATION / pd.Timedelta(seconds=1)
cal2_ = cal2_.drop(columns=[’DURATION’])

# Split initial filled State data frame into 4 seasons

cal_split_seasons = cal2_

s = cal_split_seasons.reset_index()

cal_winter = s[s[’index’].dt.month.isin([12,1,2])]
cal_spring = s[s[’index’].dt.month.isin([3,4,5])]
cal_summer = s[s[’index’].dt.month.isin([6,7,8])]
cal_automn = s[s[’index’].dt.month.isin([9,10,11])]

# Set index column as index of the data frame and impose integer type in the
total_sec column

cal_automn.set_index(’index’, inplace=True)
cal_winter.set_index(’index’, inplace=True)
cal_spring.set_index(’index’, inplace=True)
cal_summer.set_index(’index’, inplace=True)

cal_automn.total_sec = cal_automn.total_sec.astype(’int’)
cal_winter.total_sec = cal_winter.total_sec.astype(’int’)
cal_spring.total_sec = cal_spring.total_sec.astype(’int’)
cal_summer.total_sec = cal_summer.total_sec.astype(’int’)

# Transform column EVENT_TYPE in strings

cal_automn.EVENT_TYPE = cal_automn.apply(lambda row : "".join(row[’EVENT_TYPE’
]), axis=1)

cal_winter.EVENT_TYPE = cal_winter.apply(lambda row : "".join(row[’EVENT_TYPE’
]), axis=1)
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cal_spring.EVENT_TYPE = cal_spring.apply(lambda row : "".join(row[’EVENT_TYPE’
]), axis=1)

cal_summer.EVENT_TYPE = cal_summer.apply(lambda row : "".join(row[’EVENT_TYPE’
]), axis=1)

cal_automn.EVENT_TYPE.fillna(value=’␣’,inplace=True)
cal_winter.EVENT_TYPE.fillna(value=’␣’,inplace=True)
cal_spring.EVENT_TYPE.fillna(value=’␣’,inplace=True)
cal_summer.EVENT_TYPE.fillna(value=’␣’,inplace=True)

# Save all unique event 1st encoding EVENT_TYPEs into a new data frame for
every season

cal_e_t_comb_AUTUMN = cal_automn.EVENT_TYPE.unique()
cal_e_t_comb_WINTER = cal_winter.EVENT_TYPE.unique()
cal_e_t_comb_SPRING= cal_spring.EVENT_TYPE.unique()
cal_e_t_comb_SUMMER = cal_summer.EVENT_TYPE.unique()

# Create encodings only for the EVENT_TYPE column using a label encoder

encoder = LabelEncoder()

cal_automn[’EVENT_TYPE’] = encoder.fit_transform(cal_automn[[’EVENT_TYPE’]])
cal_winter[’EVENT_TYPE’] = encoder.fit_transform(cal_winter[[’EVENT_TYPE’]])
cal_spring[’EVENT_TYPE’] = encoder.fit_transform(cal_spring[[’EVENT_TYPE’]])
cal_summer[’EVENT_TYPE’] = encoder.fit_transform(cal_summer[[’EVENT_TYPE’]])

# Array of the ohe EVENT_TYPEs

ohe_cal_e_t_comb_AUTUMN = cal_automn.EVENT_TYPE.unique()
# Array of the ohe EVENT_TYPEs
ohe_cal_e_t_comb_AUTUMN = cal_automn.EVENT_TYPE.unique()
ohe_cal_e_t_comb_SPRING = cal_spring.EVENT_TYPE.unique()
ohe_cal_e_t_comb_SUMMER = cal_summer.EVENT_TYPE.unique()

# Scale data because seconds and event types have big numerical difference

scaler = MinMaxScaler()
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cal_automn[cal_automn.columns] = scaler.fit_transform(cal_automn[cal_automn.
columns])

cal_winter[cal_winter.columns] = scaler.fit_transform(cal_winter[cal_winter.
columns])

cal_spring[cal_spring.columns] = scaler.fit_transform(cal_spring[cal_spring.
columns])

cal_summer[cal_summer.columns] = scaler.fit_transform(cal_summer[cal_summer.
columns])

# Transform the four dataframes to numpy array

cal_automnA = cal_automn.to_numpy()
cal_winterA = cal_winter.to_numpy()
cal_springA = cal_spring.to_numpy()
cal_summerA = cal_summer.to_numpy()

# Split to train and test set

train_cal_AUTUMN, test_cal_AUTUMN = train_test_split(cal_automnA, test_size
=0.10, shuffle=False)

train_cal_WINTER, test_cal_WINTER = train_test_split(cal_winterA, test_size
=0.10, shuffle=False)

train_cal_SPRING, test_cal_SPRING = train_test_split(cal_springA, test_size
=0.10, shuffle=False)

train_cal_SUMMER, test_cal_SUMMER = train_test_split(cal_summerA, test_size
=0.10, shuffle=False)

n_input = 5
n_features = 2

# Final tranfrormation to LSTM compatible input format

generatorTrain_cal_AUTUMN = TimeseriesGenerator(train_cal_AUTUMN,
train_cal_AUTUMN, length=n_input, batch_size=1)

generatorTest_cal_AUTUMN = TimeseriesGenerator(test_cal_AUTUMN,
test_cal_AUTUMN, length=n_input, batch_size=1)

generatorTrain_cal_WINTER = TimeseriesGenerator(train_cal_WINTER,
train_cal_WINTER, length=n_input, batch_size=1)
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generatorTest_cal_WINTER = TimeseriesGenerator(test_cal_WINTER,
test_cal_WINTER, length=n_input, batch_size=1)

generatorTrain_cal_SPRING = TimeseriesGenerator(train_cal_SPRING,
train_cal_SPRING, length=n_input, batch_size=1)

generatorTest_cal_SPRING = TimeseriesGenerator(test_cal_SPRING,
test_cal_SPRING, length=n_input, batch_size=1)

generatorTrain_cal_SUMMER = TimeseriesGenerator(train_cal_SUMMER,
train_cal_SUMMER, length=n_input, batch_size=1)

generatorTest_cal_SUMMER = TimeseriesGenerator(test_cal_SUMMER,
test_cal_SUMMER, length=n_input, batch_size=1)

# Model architectures

# model1 for AUTUMN

model1_CAL_A = Sequential()
model1_CAL_A.add(LSTM(100, activation=’relu’, input_shape=(n_input, n_features

), return_sequences=True))
model1_CAL_A.add(LSTM(100, activation=’relu’))
model1_CAL_A.add(Dense(2))

model1_CAL_A.compile(loss=’mse’, optimizer = SGD(), metrics=[’accuracy’, ’
RootMeanSquaredError’])

callback1_CAL_A = keras.callbacks.EarlyStopping(monitor=’loss’, patience=3)

start_time1_CAL_A = time.time()
history1_CAL_A = model1_CAL_A.fit(generatorTrain_cal_AUTUMN, batch_size=100,

epochs=200, shuffle=False, verbose=2) #batch_size=72
model1_CAL_A.save("model1_CAL_A.h5")
end_time1_CAL_A= time.time()

total_time1_CAL_A = end_time1_CAL_A - start_time1_CAL_A
print("Total␣training␣time:", total_time1_CAL_A, "seconds")

#Display loss

plt.plot(history1_CAL_A.history[’loss’])
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plt.title(’model1_CAL_A␣loss’)
plt.ylabel(’loss’)
plt.xlabel(’epoch’)
plt.legend([’train’, ’test’], loc=’upper␣left’)
plt.show()

# model1 for WINTER

model1_CAL_W = Sequential()
model1_CAL_W .add(LSTM(100, activation=’relu’, input_shape=(n_input,

n_features), return_sequences=True))
model1_CAL_W .add(LSTM(100, activation=’relu’))
model1_CAL_W .add(Dense(2))

model1_CAL_W .compile(loss=’mse’, optimizer = SGD(), metrics=[’accuracy’, ’
RootMeanSquaredError’])

callback1_CAL_W = keras.callbacks.EarlyStopping(monitor=’loss’, patience=3)

start_time1_CAL_W = time.time()
history1_CAL_W = model1_CAL_W .fit(generatorTrain_cal_WINTER, batch_size=100,

epochs=4, shuffle=False, verbose=2) #batch_size=72 epochs=200

model1_CAL_W.save("model1_CAL_W.h5")

end_time1_CAL_W = time.time()

total_time1_CAL_W = end_time1_CAL_W - start_time1_CAL_W
print("Total␣training␣time:", total_time1_CAL_W , "seconds")

#Display loss

plt.plot(history1_CAL_W .history[’loss’])
plt.title(’model1_CAL_W␣␣loss’)
plt.ylabel(’loss’)
plt.xlabel(’epoch’)
plt.legend([’train’, ’test’], loc=’upper␣left’)
plt.show()

# model1 for SPRING
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model1_CAL_S = Sequential()
model1_CAL_S .add(LSTM(100, activation=’relu’, input_shape=(n_input,

n_features), return_sequences=True))
model1_CAL_S .add(LSTM(100, activation=’relu’))
model1_CAL_S .add(Dense(2))

model1_CAL_S .compile(loss=’mse’, optimizer = SGD(), metrics=[’accuracy’, ’
RootMeanSquaredError’])

callback1_CAL_S = keras.callbacks.EarlyStopping(monitor=’loss’, patience=3)

start_time1_CAL_S = time.time()
history1_CAL_S = model1_CAL_S .fit(generatorTrain_cal_SPRING, batch_size=100,

epochs=4, shuffle=False, verbose=2) #batch_size=72

model1_CAL_S.save("model1_CAL_S.h5")
end_time1_CAL_S = time.time()

total_time1_CAL_S = end_time1_CAL_S - start_time1_CAL_S
print("Total␣training␣time:", total_time1_CAL_S , "seconds")

#Display loss

plt.plot(history1_CAL_S .history[’loss’])
plt.title(’model1_CAL_S␣␣loss’)
plt.ylabel(’loss’)
plt.xlabel(’epoch’)
plt.legend([’train’, ’test’], loc=’upper␣left’)
plt.show()

# model1 for SUMMER

model1_CAL_SU = Sequential()
model1_CAL_SU .add(LSTM(100, activation=’relu’, input_shape=(n_input,

n_features), return_sequences=True))
model1_CAL_SU .add(LSTM(100, activation=’relu’))
model1_CAL_SU .add(Dense(2))
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model1_CAL_SU .compile(loss=’mse’, optimizer = SGD(), metrics=[’accuracy’, ’
RootMeanSquaredError’])

callback1_CAL_SU = keras.callbacks.EarlyStopping(monitor=’loss’, patience=3)

start_time1_CAL_SU = time.time()
history1_CAL_SU = model1_CAL_SU .fit(generatorTrain_cal_SUMMER, batch_size

=100, epochs=50, shuffle=False, verbose=2) #batch_size=72
model1_CAL_SU.save("model1_CAL_SU.h5")
end_time1_CAL_SU = time.time()

total_time1_CAL_SU = end_time1_CAL_SU - start_time1_CAL_SU
print("Total␣training␣time:", total_time1_CAL_SU , "seconds")

#Display loss

plt.plot(history1_CAL_SU .history[’loss’])
plt.title(’model1_CAL_SU␣␣loss’)
plt.ylabel(’loss’)
plt.xlabel(’epoch’)
plt.legend([’train’, ’test’], loc=’upper␣left’)
plt.show()

# Model 2 CAL AUTUMN

model2 = Sequential()
model2.add(LSTM(100, activation=’relu’, input_shape=(n_input, n_features),

return_sequences=True))
model2.add(LSTM(100, activation=’relu’))
model2.add(Dense(2))
model2.compile(loss=’mse’, optimizer = ’Adam’, metrics=[’accuracy’, ’

RootMeanSquaredError’])
callback2 = keras.callbacks.EarlyStopping(monitor=’loss’, patience=3)

start_time2 = time.time()
history2 = model2.fit(generatorTrain_cal_AUTUMN, batch_size=100, epochs=150,

shuffle=False, verbose=2) #batch_size=72
model2.save("model2_CAL_A.h5")
end_time2 = time.time()
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total_time2 = end_time2 - start_time2
print("Total␣training␣time:", total_time2, "seconds")

#Display loss

plt.plot(history2.history[’loss’])
plt.title(’model␣loss’)
plt.ylabel(’loss’)
plt.xlabel(’epoch’)
plt.legend([’train’, ’test’], loc=’upper␣left’)
plt.show()

# Model 2 CAL WINTHER

model2_CAL_W = Sequential()
model2_CAL_W.add(LSTM(100, activation=’relu’, input_shape=(n_input, n_features

), return_sequences=True))
model2_CAL_W.add(LSTM(100, activation=’relu’))
model2_CAL_W.add(Dense(2))
model2_CAL_W.compile(loss=’mse’, optimizer = ’Adam’, metrics=[’accuracy’, ’

RootMeanSquaredError’])
callback2_CAL_W = keras.callbacks.EarlyStopping(monitor=’loss’, patience=3)

start_time2_CAL_W = time.time()
history2_CAL_W = model2_CAL_W.fit(generatorTrain_cal_WINTER, batch_size=100,

epochs=150, shuffle=False, verbose=2) #batch_size=72
model2_CAL_W.save("model2_CAL_W.h5")
end_time2_CAL_W = time.time()

total_time2_CAL_W = end_time2_CAL_W - start_time2_CAL_W
print("Total␣training␣time:", total_time2_CAL_W, "seconds")

#Display loss

plt.plot(history2_CAL_W.history[’loss’])
plt.title(’model␣loss’)
plt.ylabel(’loss’)
plt.xlabel(’epoch’)
plt.legend([’train’, ’test’], loc=’upper␣left’)
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plt.show()

# Model 2 CAL SPRING

model2_CAL_S = Sequential()
model2_CAL_S.add(LSTM(100, activation=’relu’, input_shape=(n_input, n_features

), return_sequences=True))
model2_CAL_S.add(LSTM(100, activation=’relu’))
model2_CAL_S.add(Dense(2))
model2_CAL_S.compile(loss=’mse’, optimizer = ’Adam’, metrics=[’accuracy’, ’

RootMeanSquaredError’])
callback2_CAL_S = keras.callbacks.EarlyStopping(monitor=’loss’, patience=3)

start_time2_CAL_S = time.time()
history2_CAL_S = model2_CAL_S.fit(generatorTrain_cal_SPRING, batch_size=100,

epochs=150, shuffle=False, verbose=2)
model2_CAL_S.save("model2_CAL_S.h5")
end_time2_CAL_S = time.time()

total_time2_CAL_S = end_time2_CAL_S - start_time2_CAL_S
print("Total␣training␣time:", total_time2_CAL_S, "seconds")

#Display loss

plt.plot(history2_CAL_S.history[’loss’])
plt.title(’model2_CAL_S␣loss’)
plt.ylabel(’loss’)
plt.xlabel(’epoch’)
plt.legend([’train’, ’test’], loc=’upper␣left’)
plt.show()

# Model 2 CAL SUMMER

model2_CAL_SU = Sequential()
model2_CAL_SU.add(LSTM(100, activation=’relu’, input_shape=(n_input,

n_features), return_sequences=True))
model2_CAL_SU.add(LSTM(100, activation=’relu’))
model2_CAL_SU.add(Dense(2))
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model2_CAL_SU.compile(loss=’mse’, optimizer = ’Adam’, metrics=[’accuracy’, ’
RootMeanSquaredError’])

callback2_CAL_SU = keras.callbacks.EarlyStopping(monitor=’loss’, patience=3)

start_time2_CAL_SU = time.time()
history2_CAL_SU = model2_CAL_SU.fit(generatorTrain_cal_SUMMER, batch_size=100,

epochs=150, shuffle=False, verbose=2) #batch_size=72
model2_CAL_SU.save("model2_CAL_SU.h5")
end_time2_CAL_SU = time.time()

total_time2_CAL_SU = end_time2_CAL_SU - start_time2_CAL_SU
print("Total␣training␣time:", total_time2_CAL_SU, "seconds")

#Display loss

plt.plot(history2_CAL_SU.history[’loss’])
plt.title(’model2_CAL_SU␣loss’)
plt.ylabel(’loss’)
plt.xlabel(’epoch’)
plt.legend([’train’, ’test’], loc=’upper␣left’)
plt.show()

# model 3 CAL AUTUMN

model3 = Sequential()
model3.add(LSTM(100, activation=LeakyReLU(alpha=0.2), input_shape=(n_input,

n_features), return_sequences=True))
model3.add(LSTM(100, activation=LeakyReLU(alpha=0.2)))
model3.add(Dense(2))
model3.compile(loss=’mse’, optimizer = ’Adam’, metrics=[’accuracy’, ’

RootMeanSquaredError’])
callback3 = keras.callbacks.EarlyStopping(monitor=’loss’, patience=3)

start_time3 = time.time()
history3 = model3.fit(generatorTrain_cal_AUTUMN, batch_size=100, epochs=150,

shuffle=False,verbose=2) #batch_size=72
model3.save("model3_CAL_A.h5")
end_time3 = time.time()
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total_time3 = end_time3 - start_time3
print("Total␣training␣time:", total_time3, "seconds")

#Display loss

plt.plot(history3.history[’loss’])
plt.title(’model␣loss’)
plt.ylabel(’loss’)
plt.xlabel(’epoch’)
plt.legend([’train’, ’train’], loc=’upper␣left’)
plt.show()

# MODEL 3 CAL WINTER

model3_CAL_W = Sequential()
model3_CAL_W.add(LSTM(100, activation=LeakyReLU(alpha=0.2), input_shape=(

n_input, n_features), return_sequences=True))
model3_CAL_W.add(LSTM(100, activation=LeakyReLU(alpha=0.2)))
model3_CAL_W.add(Dense(2))
model3_CAL_W.compile(loss=’mse’, optimizer = ’Adam’, metrics=[’accuracy’, ’

RootMeanSquaredError’])
callback3_CAL_W = keras.callbacks.EarlyStopping(monitor=’loss’, patience=3)

start_time_CAL_W = time.time()
history3_CAL_W = model3_CAL_W.fit(generatorTrain_cal_WINTER, batch_size=100,

epochs=150, shuffle=False,verbose=2) #batch_size=72
model3_CAL_W.save("model3_CAL_W.h5")
end_time3_CAL_W = time.time()

total_time3_CAL_W = end_time3_CAL_W - start_time3_CAL_W
print("Total␣training␣time:", total_time3_CAL_W, "seconds")

#Display loss

plt.plot(history3_CAL_W.history[’loss’])
plt.title(’model3_CAL_W␣loss’)
plt.ylabel(’loss’)
plt.xlabel(’epoch’)
plt.legend([’train’, ’train’], loc=’upper␣left’)
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plt.show()

# MODEL 3 CAL SPRING

model3_CAL_S = Sequential()
model3_CAL_S.add(LSTM(100, activation=LeakyReLU(alpha=0.2), input_shape=(

n_input, n_features), return_sequences=True))
model3_CAL_S.add(LSTM(100, activation=LeakyReLU(alpha=0.2)))
model3_CAL_S.add(Dense(2))
model3_CAL_S.compile(loss=’mse’, optimizer = ’Adam’, metrics=[’accuracy’, ’

RootMeanSquaredError’])
callback3_CAL_S = keras.callbacks.EarlyStopping(monitor=’loss’, patience=3)

start_time3_CAL_S = time.time()
history3_CAL_S = model3_CAL_S.fit(generatorTrain_cal_SPRING, batch_size=100,

epochs=150, shuffle=False,verbose=2) #batch_size=72
model3_CAL_S.save("model3_CAL_S.h5")
end_time3_CAL_S = time.time()

total_time3_CAL_S = end_time3_CAL_S - start_time3_CAL_S
print("Total␣training␣time:", total_time3_CAL_S, "seconds")

#Display loss

plt.plot(history3_CAL_S.history[’loss’])
plt.title(’model3_CAL_S␣loss’)
plt.ylabel(’loss’)
plt.xlabel(’epoch’)
plt.legend([’train’, ’train’], loc=’upper␣left’)
plt.show()

# MODEL 3 CAL SUMMER

model3_CAL_SU = Sequential()
model3_CAL_SU.add(LSTM(100, activation=LeakyReLU(alpha=0.2), input_shape=(

n_input, n_features), return_sequences=True))
model3_CAL_SU.add(LSTM(100, activation=LeakyReLU(alpha=0.2)))
model3_CAL_SU.add(Dense(2))

71



model3_CAL_SU.compile(loss=’mse’, optimizer = ’Adam’, metrics=[’accuracy’, ’
RootMeanSquaredError’])

callback3_CAL_SU = keras.callbacks.EarlyStopping(monitor=’loss’, patience=3)

start_time3_CAL_SU = time.time()
history3_CAL_SU = model3_CAL_SU.fit(generatorTrain_cal_SUMMER, batch_size=100,

epochs=150, shuffle=False,verbose=2) #batch_size=72
model3_CAL_SU.save("model3_CAL_SU.h5")
end_time3_CAL_SU = time.time()

total_time3_CAL_SU = end_time3_CAL_SU - start_time3_CAL_SU
print("Total␣training␣time:", total_time3_CAL_SU, "seconds")

#Display loss

plt.plot(history3_CAL_SU.history[’loss’])
plt.title(’model3_CAL_SU␣loss’)
plt.ylabel(’loss’)
plt.xlabel(’epoch’)
plt.legend([’train’, ’train’], loc=’upper␣left’)
plt.show()

The same preprocessing steps are repeated with the respective reformulations for all other
ports, in total for 96 models.
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8 Appendix B

The model results according to different architectures are displayed in the tables below.

Figure 33: Model results for California
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Figure 34: Model results for New York
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Figure 35: Model results for Georgia
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Figure 36: Model results for Washington
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Figure 37: Model results for Virginia
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Figure 38: Model results for Texas
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Figure 39: Model results for South Carolina
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Figure 40: Model results for South Florida
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In the following section presents the code used to obtain the predictions of the models over
the test set and the forecast for the next 5 days for each port and season. We chose to present
among 96 models only the results of those that achieve model accuracy over the training set
greater than 55%.

# Load the saved model
model3_CAL_W = load_model(’model3_CAL_W.h5’)

n_input = 5
n_features = 2

model3_CAL_W_predictions = []
model3_CAL_W_first_batch = train_cal_AUTUMN[-n_input:]
model3_CAL_W_current_batch = model3_CAL_W_first_batch.reshape((1, n_input,

n_features))

for i in range(len(test_cal_WINTER)):
model3_CAL_W_current_pred = model3_CAL_W.predict(

model3_CAL_W_current_batch)[0] # the event type
model3_CAL_W_predictions.append(model3_CAL_W_current_pred)
model3_CAL_W_current_batch_remove_first = model3_CAL_W_current_batch[:,

1:, :]
model3_CAL_W_current_batch = np.append(

model3_CAL_W_current_batch_remove_first, [[model3_CAL_W_current_pred]],
axis=1)

# Reverse the scaling operation

model3_CAL_W_predictions_actual_scale = scaler.inverse_transform(
model3_CAL_W_predictions)

model3_CAL_W_test_data_actual_scale = scaler.inverse_transform(test_cal_WINTER
)

# Line plot to have a clearer view for the true predicted values

plt.plot(model3_CAL_W_predictions_actual_scale[:20,0], c=’cyan’)
plt.plot(model3_CAL_W_test_data_actual_scale[:20,0], color=’gray’)
plt.xlabel(’Future␣consecutive␣days’)
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plt.ylabel(’Actual␣Values␣vs␣20␣days␣Prediction’)
plt.title(’Predictions␣vs␣Actual␣Values␣within␣the␣next␣20␣days␣(model3_CAL_W)

’)
# Set x-axis ticks to integers
plt.xticks(range(1, len(actual_values) + 1))
plt.grid()
plt.show()

# Arrays of predictions and actual values

predictions = model3_CAL_W_predictions_actual_scale[:20, 0]
actual_values = model3_CAL_W_test_data_actual_scale[:20, 0]

# Create an array of day numbers

day_numbers = range(1, len(actual_values) + 1)

# Scatter plot with different colors

for actual, pred, day_num in zip(actual_values, predictions, day_numbers):
color = ’b’
if actual == pred:

plt.scatter(day_num, actual, c=’r’, alpha=0.7)
elif day_num in [1,4,11,13,17,18]:

plt.scatter(day_num, pred, c=’r’, alpha=0.7)
else:

plt.scatter(day_num, actual, c=’gray’, alpha=0.7)
plt.scatter(day_num, pred, c=color, alpha=0.7)

plt.xlabel(’Day␣Number’)
plt.ylabel(’ohe␣EVENT_TYPES’)
plt.title(’Predicted␣vs␣Actual␣Values␣for␣the␣next␣20␣days␣(model3_CAL_W)’)

# Set x-axis ticks to integers

plt.xticks(range(1, len(actual_values) + 1))

# Add legend manually for custom colors
plt.scatter([], [], c=’r’, label=’Actual␣=␣Predicted’, alpha=0.7)
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plt.scatter([], [], c=’gray’, label=’Actual’, alpha=0.7)
plt.scatter([], [], c=’b’, label=’Predicted’, alpha=0.7)
plt.legend()
plt.grid()
plt.show()

FORECAST_model3_CAL_W_NEXT_5_DAYS = []
FORECAST_model3_CAL_W_NEXT_5_DAYS_first_batch = test_cal_WINTER[-n_input:] #

take into account 5 previous values
FORECAST_model3_CAL_W_NEXT_5_DAYS_current_batch =

FORECAST_model3_CAL_W_NEXT_5_DAYS_first_batch.reshape((1, n_input,
n_features))

for i in range(len(test_cal_WINTER[-5:])):
FORECAST_model3_CAL_W_NEXT_5_DAYS_current_pred = model3_CAL_W.predict(

FORECAST_model3_CAL_W_NEXT_5_DAYS_current_batch)[0]
FORECAST_model3_CAL_W_NEXT_5_DAYS.append(

FORECAST_model3_CAL_W_NEXT_5_DAYS_current_pred)
FORECAST_model3_CAL_W_NEXT_5_DAYS_current_batch_remove_first =

FORECAST_model3_CAL_W_NEXT_5_DAYS_current_batch[:, 1:, :]
FORECAST_model3_CAL_W_NEXT_5_DAYS_current_batch = np.append(

FORECAST_model3_CAL_W_NEXT_5_DAYS_current_batch_remove_first, [[
FORECAST_model3_CAL_W_NEXT_5_DAYS_current_pred]], axis=1)

FORECAST_model3_CAL_W_NEXT_5_DAYS

# Reverse the scaling operation

results = scaler.inverse_transform(FORECAST_model3_CAL_W_NEXT_5_DAYS)

# Try for values [0:4] to obtain all 5 forecasted values

FORECAST_EVENT_TYPE = int(results[:,:][4][0])
FORECAST_DURATION = results[:,:][4][1]

print("The␣model␣predicts␣the␣next␣5␣winter␣days␣in␣California␣will␣have␣
incidents␣of␣type␣{}␣the␣will␣last␣for␣{}".format(FORECAST_EVENT_TYPE, str
(timedelta(seconds=int(FORECAST_DURATION)))))

83



# Create dataframe with the first encoding and the ohe

EVENT_TYPE_transformations = pd.DataFrame(data= [cal_e_t_comb_WINTER,
ohe_cal_e_t_comb_WINTER]).T

EVENT_TYPE_transformations.columns=[’EVENT_TYPE_f1’,’EVENT_TYPE_ohe’]

# Output of the model prediction

EVENT_TYPE_transformations[EVENT_TYPE_transformations.EVENT_TYPE_ohe ==
FORECAST_EVENT_TYPE]
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We repeat the last steps forecasting the next 20 days on the training set and the next
5 days beyond the training set in the future, for models model1CALSU , model2CALSU ,
model3CALSU . Specifically this regards to all summer NEW YORK models, model1 for au-
tumn Georgia, and all summer and spring Georgia models, model1 for autumn Washington,
all summer Virginia models, model1 for winter Texas, model2 and model3 for spring Texas, all
summer Texas models and all summer South Carolina models that present the best accuracy
in the training set.

The following figures display on the left the monitoring of loss decrease over the training
periods and on the right the predictions over first 20 days of the test set.

Figure 41: model1 accuracy over the test set for autumn California:20%

Figure 42: model3 accuracy over the test set for winter California: 30%
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Figure 43: model1 accuracy over the test set for summer California: 20%

Figure 44: model2 accuracy over the test set for summer California: 25%

Figure 45: model3 accuracy over the test set for summer California: 25%

Figure 46: model1 accuracy over the test set for summer New York: 35%
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Figure 47: model1 accuracy over the test set for summer New York: 35%

Figure 48: model1 accuracy over the test set for spring Georgia: 20%

Figure 49: model1 accuracy over the test set for spring Georgia: 20%

Figure 50: model1 accuracy over the test set for summer Georgia: 10%
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Figure 51: model2 accuracy over the test set for summer Georgia: 10%

Figure 52: model3 accuracy over the test set for summer Georgia: 10%

Figure 53: model3 accuracy over the test set for autumn Washington: 10%

Figure 54: model1 accuracy over the test set for summer Virginia: 40%
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Figure 55: model2 accuracy over the test set for summer Virginia: 40%

Figure 56: model3 accuracy over the test set for summer Virginia: 45%

Figure 57: model3 accuracy over the test set for autumn Texas: 50%

Figure 58: model2 accuracy over the test set for spring Texas: 45%
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Figure 59: model3 accuracy over the test set for spring Texas: 35%

Figure 60: model1 accuracy over the test set for summer Texas: 10%

Figure 61: model2 accuracy over the test set for summer Texas: 10%

Figure 62: model3 accuracy over the test set for summer Texas: 10%
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Figure 63: model1 accuracy over the test set for summer South Carolina: 35%

Figure 64: model2 accuracy over the test set for summer South Carolina: 45%

Figure 65: model3 accuracy over the test set for summer South Carolina: 35%
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Figure 66: Forecasts for the next 5 days per season and port for 2023
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Figure 67: Forecasts for the next 5 days per season and port for 2023
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Figure 68: Forecasts for the next 5 days per season and port for 2023
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Figure 69: Forecasts for the next 5 days per season and port ports for 2023
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